

JAK Inhibitors and Monoclonal Antibodies for the Treatment of Atopic Dermatitis: Effectiveness and Value

Final Evidence Report

August 17, 2021

Prepared for

ICER Staff and Consultants	The University of Washington Modeling Group
Steven J. Atlas, MD, MPH	Elizabeth Brouwer, PhD, MPH
Associate Professor of Medicine	Research Scientist
Harvard Medical School, Boston	The Comparative Health Outcomes, Policy, and
Director, Practice Based Research & Quality Improvement	Economics (CHOICE) Institute
Division of General Internal Medicine	Department of Pharmacy
Massachusetts General Hospital	University of Washington
Grace E. Fox, PhD	Josh J. Carlson, PhD, MPH
Research Lead	Associate Professor
ICER	The CHOICE Institute
	Department of Pharmacy
Foluso Agboola, MBBS, MPH	University of Washington
Vice President of Research	
ICER	Yilin Chen, MPH
	PhD Student
Jon D. Campbell, PhD, MS	The CHOICE Institute
Senior Vice President for Health Economics	Department of Pharmacy
ICER	University of Washington
Steven D. Pearson, MD, MSc	Ryan N. Hansen, PharmD, PhD
President	Associate Professor
ICER	The CHOICE Institute
	Department of Pharmacy
David M. Rind, MD, MSc	University of Washington
Chief Medical Officer	
ICER	The role of The University of Washington is limited to the
	development of the cost-effectiveness model, and the
	resulting ICER reports do not necessarily represent the
	views of The University of Washington.

DATE OF

PUBLICATION: August 17, 2021

How to cite this document: Atlas SJ, Brouwer E, Fox G, Carlson JJ, Campbell JD, Agboola F, Hansen RN, Pearson SD, Rind DM. JAK Inhibitors and Monoclonal Antibodies for the Treatment of Atopic Dermatitis: Effectiveness and Value; Evidence Report. Institute for Clinical and Economic Review, July 9, 2021. https://icer.org/assessment/atopic-dermatitis-2021/#timeline

Acknowledgements: Steven Atlas served as the lead author for the report and wrote the executive summary, background, patient and caregiver perspectives, uncertainty and controversies, summary and comment, potential other benefit and contextual considerations, definitions and oversaw the comparative clinical effectiveness sections in the main report and supplemental information. Grace Fox and Foluso Agboola led the systematic review and wrote the clinical effectiveness sections in collaboration with Steven Atlas. We would like to acknowledge the work of Serina Herron-Smith and Emily Nhan who contributed to the clinical effectiveness sections. Josh Carlson, Ryan Hansen, and Elizabeth Brouwer developed the economic model and authored the cost-effectiveness sections in collaboration with Yilin Chen. Jon Campbell provided methods guidance for the cost-effectiveness modeling and authored the budget impact analysis section. David Rind and Steven Pearson provided methodologic guidance on the clinical and economic evaluations. We would like to thank Ashton Moradi for his contributions to the budget impact analysis. We also thank Maggie Houle, Liis Shea, and Zunelly Odhiambo for their contributions to this report.

About ICER

The Institute for Clinical and Economic Review (ICER) is an independent non-profit research organization that evaluates medical evidence and convenes public deliberative bodies to help stakeholders interpret and apply evidence to improve patient outcomes and control costs. Through all its work, ICER seeks to help create a future in which collaborative efforts to move evidence into action provide the foundation for a more effective, efficient, and just health care system. More information about ICER is available at https://icer.org/.

The funding for this report comes from government grants and non-profit foundations, with the largest single funder being the Arnold Ventures. No funding for this work comes from health insurers, pharmacy benefit managers, or life science companies. ICER receives approximately 21% of its overall revenue from these health industry organizations to run a separate Policy Summit program, with funding approximately equally split between insurers/PBMs and life science companies. Life science companies relevant to this review who participate in this program include: AbbVie, Eli Lilly, Incyte, Leo Pharma, Pfizer, Regeneron, and Sanofi. For a complete list of funders and for more information on ICER's support, please visit our independent funding webpage.

For drug topics, in addition to receiving recommendations <u>from the public</u>, ICER scans publicly available information and also benefits from a collaboration with <u>IPD Analytics</u>, an independent organization that performs analyses of the emerging drug pipeline for a diverse group of industry stakeholders, including payers, pharmaceutical manufacturers, providers, and wholesalers. IPD provides a tailored report on the drug pipeline on a courtesy basis to ICER but does not prioritize topics for specific ICER assessments.

About New England CEPAC

The New England CEPAC – a core program of ICER – provides a public venue in which the evidence on the effectiveness and value of health care services can be discussed with the input of all stakeholders. CEPAC seeks to help patients, clinicians, insurers, and policymakers interpret and use evidence to improve the quality and value of health care.

The CEPAC Panel is an independent committee of medical evidence experts from across New England, with a mix of practicing clinicians, methodologists, and leaders in patient engagement and advocacy. All Panel members meet strict conflict of interest guidelines and are convened to discuss the evidence summarized in ICER reports and vote on the comparative clinical effectiveness and value of medical interventions. More information about CEPAC is available at https://icer.org/who-we-are/people/independent-appraisal-committees/new-england-cepac/.

The findings contained within this report are current as of the date of publication. Readers should be aware that new evidence may emerge following the publication of this report that could potentially influence the results. ICER may revisit its analyses in a formal update to this report in the future.

The economic models used in ICER reports are intended to compare the clinical outcomes, expected costs, and cost effectiveness of different care pathways for broad groups of patients. Model results therefore represent average findings across patients and should not be presumed to represent the clinical or cost outcomes for any specific patient. In addition, data inputs to ICER models often come from clinical trials; patients in these trials may differ in real-world practice settings.

In the development of this report, ICER's researchers consulted with several clinical experts, patients, manufacturers, and other stakeholders. The following experts provided input that helped guide the ICER team as we shaped our scope and report. It is possible that expert reviewers may not have had the opportunity to review all portions of this draft report. None of these individuals is responsible for the final contents of this report, nor should it be assumed that they support any part of it. The report should be viewed as attributable solely to the ICER team and its affiliated researchers.

For a complete list of stakeholders from whom we requested input, please visit: https://icer.org/wp-content/uploads/2021/01/ICER Atopic-Dermatitis Stakeholder-List 011521.pdf

Expert Reviewers

Wendy Smith Begolka, MBS
Vice President, Scientific and Clinical Affairs
National Eczema Association

Wendy is a salaried employee of the National Eczema Association which has received grants and sponsorship awards from a variety of industry partners.

Jonathan Silverberg, MD, PhD, MPH Associate Professor of Dermatology

The George Washington University School of Medicine and Health Sciences

Dr. Silverberg has received honoraria as a consultant and/or advisory board member for AbbVie, Eli Lilly, Incyte, Leo Pharma, Pfizer, Regeneron, and Sanofi. He has also served as a speaker for Eli Lilly, Leo, Pfizer, and Regeneron.

Eric Simpson, MD, MCR
Professor of Dermatology
Oregon Health & Science University, School of Medicine

Dr. Simpson receives honoraria and grants from AbbVie, Eli Lilly, Incyte, Leo Pharma, Pfizer, Regeneron, and Sanofi.

Table of Contents

Executive Summary	ES1
1. Background	1
2. Patient and Caregiver Perspectives	3
3. Comparative Clinical Effectiveness	6
3.1. Methods Overview	6
3.2. Results for Moderate-to-Severe Population	11
Summary and Comment	23
3.3. Results for Mild-to-Moderate Population	25
Summary and Comment	29
4. Long-Term Cost Effectiveness	31
4.1. Methods Overview	31
4.2. Key Model Choices and Assumptions	32
4.3. Results	40
4.4 Summary and Comment	47
5. Contextual Considerations and Potential Other Benefits	48
6. Health Benefit Price Benchmarks	52
7. Potential Budget Impact	54
7.1. Overview of Key Assumptions	54
7.2. Results	54
A. Background: Supplemental Information	66
A1. Definitions	66
A2. Potential Cost-Saving Measures in Atopic Dermatitis	69
B. Patient Perspectives: Supplemental Information	70
B1. Methods	70
C. Clinical Guidelines	
D. Comparative Clinical Effectiveness: Supplemental Information	75
D1. Detailed Methods	75
D2. Network Meta-Analysis Supplemental Information	89

	D3. Additional Clinical Evidence	101
	Moderate-to-Severe Population	.101
	Adults	.101
	Children and Adolescents	.111
	Mild-to-Moderate Population	.117
	D4. Ongoing Studies	.119
	D5. Previous Systematic Reviews and Technology Assessments	.124
Ε	. Long-Term Cost Effectiveness: Supplemental Information	127
	E1. Detailed Methods	127
	E2. Results	.129
	E3. Sensitivity Analyses	.132
	E4. Scenario Analyses	.140
	E5. Prior Economic Models	.148
F.	Potential Budget Impact: Supplemental Information	.149
	Methods	.149
	Results	.150
G	. Additional Evidence Tables	.154
R	eferences	.296

List of Acronyms and Abbreviations Used in this Report

ADerm-IS Atopic Dermatitis Impact Scale

AE Adverse event

AHRQ Agency for Healthcare Research and Quality

BSA Body surface area

CDLQI Children's Dermatology Life Quality Index

CPI Consumer Price Index

DFI Dermatitis Family Impact questionnaire

DLQI Dermatology Life Quality Index EASI Eczema Area Severity Index

EQ-5D EuroQol five-dimension questionnaire

FDA Food and Drug Administration

HADS Hospital Anxiety and Depression Scale
IGA Investigator's Global Assessment

IL Interleukin JAK Janus kinase

NICE National Institutes for Health and Care Excellence

NMA Network meta-analysis PDE 4 Phosphodiesterase 4

PICOTS Population, Intervention, Comparators, Outcomes, Timing, and Settings

POEM Patient-Oriented Eczema Measure
PP-NRS Peak Pruritus Numerical Rating Scale

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

QALY Quality-adjusted life-year

QoL Quality of life

QW Weekly dosing regimen

Q2W Every two-week dosing regimen
RCT Randomized controlled trial
SCORAD Scoring Atopic Dermatitis
SLR Systematic literature review
TCI Topical calcineurin inhibitors
TCS Topical corticosteroids

USPSTF US Preventive Services Task Force

WPAI Workplace Productivity and Activity Impairment

WTP Willingness to pay

Executive Summary

Atopic dermatitis is a common, chronic skin condition with persistent or relapsing lesions that are itchy, inflamed, and dry. Commonly referred to as "eczema," atopic dermatitis affects both children and adults. Symptoms of itching and even skin pain vary in severity, but can affect sleep, cause psychological distress, and result in difficulty with performance at school or work. The appearance of the skin can also lead to social embarrassment and isolation. The net effect is that atopic dermatitis can have a profound effect on all aspects of patients' lives and those of their family and caregivers. In the United States (US), atopic dermatitis is estimated to affect around 11-15% of children and 7-10% of adults. The overall costs associated with atopic dermatitis are estimated to be \$5.3 billion dollars in the US, including over \$1 billion in health care costs. Atopic dermatitis also can lead to work and productivity loss.

Patients and caregivers emphasized the importance of having measures of treatment outcomes that are most meaningful to them. Itching and pain were seen as the key outcomes, but their impact on sleep, increased distraction, worry, anxiety and other aspects of life varied according to an individual's particular circumstances. For example, some patients reflected that when they were adolescents, appearance was most important to them. As they got older, other issues such as the impact on the skin in terms of pain and infections became more important. Though all recognized atopic dermatitis as a chronic condition, the importance of flares and the need to break cycles of worsening disease was also emphasized. Since many individuals also are impacted by other conditions such as asthma and allergies, and some treatments improve these conditions as well, we heard about the importance of thinking broadly about the benefits of treatments. Since itching is the most bothersome symptom for most patients, the importance of measuring the impact of treatments on itch and associated issues such as sleep disruption are needed. The importance of comprehensive outcome measures that capture the diversity and impact of atopic dermatitis over time was emphasized.

ICER reviewed dupilumab for moderate-to-severe atopic dermatitis and topical crisaborole for mild-to-moderate atopic dermatitis in 2017. A number of new biologic therapies are available or being evaluated in patients with atopic dermatitis. Tralokinumab, a monoclonal antibody that blocks IL-13 receptor binding is given subcutaneously and is under investigation for patients with moderate-to-severe atopic dermatitis. Abrocitinib, baricitinib, and upadacitinib are oral Janus kinase (JAK) inhibitors that are also being evaluated for patients with moderate-to-severe atopic dermatitis. Concerns about the safety of oral JAK inhibitors that are approved for other conditions has led the U.S. Food and Drug Administration (FDA) to extend the review period for these drugs, ¹³ and tralokinumab received a Complete Response Letter from the FDA requesting additional data relating to a device component used to inject tralokinumab. ¹⁴ A topical JAK inhibitor, ruxolitinib

cream, is being evaluated for patients with mild-to-moderate atopic dermatitis, and its review period has also been extended by the FDA.¹⁵

In the moderate-to-severe population, the four interventions all improved skin findings compared with placebo, and, where assessed, appeared to improve itch, sleep, and quality of life. Quantitative indirect comparisons across the new agents and dupilumab, as well as head-to-head comparisons between two of the agents (upadacitinib and abrocitinib) and dupilumab suggest that higher doses of upadacitinib and possibly abrocitinib are somewhat more effective than dupilumab, while baricitinib (at the doses likely to be approved) and tralokinumab are likely somewhat less effective than dupilumab; however, there is substantial uncertainty in these comparisons. Resolution of itch may occur more quickly with higher-dose abrocitinib than with dupilumab.

Safety is an important consideration with biologic therapies and, as above there have been particular concerns about the safety of oral JAK inhibitors when used for other conditions. Concerns about lack of long-term data for dupilumab, noted in ICER's 2017 report, have been alleviated over time based on published data and widespread use in clinical practice. Tralokinumab is a novel inhibitor of IL-13 that works through a mechanism more similar to dupilumab than the JAK inhibitors, but lacks the same long-term safety profile of dupilumab.

An additional consideration in comparing therapies is that many patients with atopic dermatitis have comorbid atopic conditions such as asthma, and dupilumab has proven efficacy in treating certain patients with asthma or chronic rhinosinusitis.

Taking into consideration the above information on short-term benefits seen in the trials but limited data and concerns about long-term safety, especially for oral JAK inhibitors, we concluded the evidence on net health benefit for abrocitinib, baricitinib, upadacitinib, and tralokinumab compared with topical therapies alone was *promising but inconclusive* ("P/I") and compared to each other was *insufficient* ("I"). We concluded that the evidence for net health benefit for abrocitinib and upadacitinib compared with dupilumab was also *insufficient* ("I"), and that the net health benefit of baricitinib and tralokinumab were *comparable or inferior* ("C-") when compared with dupilumab.

Since the baricitinib and tralokinumab trials only included adults and abrocitinib and upadacitinib trials enrolled small numbers of patients younger than age 18, there is greater uncertainty for adolescents with the new therapies.

We compared the cost and effectiveness of abrocitinib, baricitinib, tralokinumab and upadacitinib for moderate to severe atopic dermatitis to topical emollients (standard of care) and dupilumab, over a five-year time horizon taking a health system perspective.

Estimated net prices were used for baricitinib, upadacitinib and dupilumab that are currently marketed. For abrocitinib, we used the average of the net prices of baricitinib and upadacitinib as a placeholder. For tralokinumab, we used the net price of dupilumab as a placeholder.

Table ES1 presents the incremental results from the base case cost-effectiveness analysis. Given no modeled gains in life years across the evaluated therapies, the cost per life year gained is not reported.

Table ES1. Incremental Cost-Effectiveness Ratios for the Base Case

Treatment	Comparator	Cost per QALY	Cost per Life	Cost per evLYG
		Gained	Year Gained	
Abrocitinib*	SoC	\$148,300	NA	\$148,300
Baricitinib	SoC	\$71,600	NA	\$71,600
Tralokinumab*	SoC	\$129,400	NA	\$129,400
Upadacitinib	SoC	\$248,400	NA	\$248,400
Dupilumab	SoC	\$110,300	NA	\$110,300
Abrocitinib*	Dupilumab	\$303,400	NA	\$303,400
Baricitinib	Dupilumab	Less Costly, Less Effective	NA	Less Costly, Less Effective
Tralokinumab*	Dupilumab	Less Costly, Less Effective	NA	Less Costly, Less Effective
Upadacitinib	Dupilumab	\$1,912,200	NA	\$1,912,200

evLYG: equal-value life-year gained, QALY: quality-adjusted life-year, SOC: Standard of Care

Note: The cost per QALY and cost per evLYG ratios were the same given that the treatments have not been shown to lengthen life.

From the cost-effectiveness base case assuming the standard of care comparator, we estimated the Health Benefit Price Benchmarks (HBPBs) for each intervention. The HBPB range for abrocitinib is \$30,600 to \$41,800 (discounts not presented due to placeholder price); for baricitinib, \$24,400 to \$29,000 (16% discount to no discount from Wholesale Acquisition Cost (WAC) needed at the \$150,000 threshold); for tralokinumab from \$25,700 to \$35,000 (discounts not presented due to placeholder price); for upadacitinib from \$30,400 to \$41,500 (discounts of 35% to 53% from WAC); and for dupilumab from \$29,000 to \$39,500 (discounts of 6% to 31% from WAC).

^{*}Using a placeholder price

Table ES2. Annual Cost-Effectiveness Health Benefit Price Benchmarks for Abrocitinib, Baricitinib, Tralokinumab, Upadacitinib, and Dupilumab versus Standard of Care

Health Benefit Measure	Annual WAC	Annual Price at \$100,000 Threshold	Annual Price at \$150,000 Threshold	Discount from WAC to Reach Threshold Prices					
	Abrocitinib								
QALYs Gained	NA*	\$30,600	\$41,800	NA*					
evLYG	NA*	\$30,600	\$41,800	NA*					
		Baricitinib							
QALYs Gained	\$29,000	\$24,400	\$33,300	0% to 16%					
evLYG	\$29,000	\$24,400	\$33,300	0% to 16%					
		Tralokinumab							
QALYs Gained	NA*	\$25,700	\$35,000	NA*					
evLYG	NA*	\$25,700	\$35,000	NA*					
		Upadacitinib							
QALYs Gained	\$64,300	\$30,400	\$41,500	35% to 53%					
evLYG	\$64,300	\$30,400	\$41,500	35% to 53%					
		Dupilumab							
QALYs Gained	\$41,800	\$29,000	\$39,500	6% to 31%					
evLYG	\$41,800	\$29,000	\$39,500	6% to 31%					

WAC: wholesale acquisition cost; evLYG: equal value life year gained; QALY: quality-adjusted life year

In the mild-to-moderate population, topical ruxolitinib cream was more effective than vehicle (placebo). While ruxolitinib cream also appeared to be more effective than a medium potency topical corticosteroid, it was not compared to more potent topical corticosteroids and differences in trial designs precluded quantitative indirect comparisons across topical therapies. There is currently limited information on long-term safety of ruxolitinib cream. As a topical JAK inhibitor therapy, safety concerns are likely not as great as with oral JAK inhibitors, but there still is systemic absorption of the topical agent. Topical corticosteroids have known harms both to the skin and, particularly with higher potency preparations in children, a risk for systemic harms. Topical calcineurin inhibitors carry a "black box" warning for a potential risk for causing malignancy, although many clinical experts feel the evidence does not warrant this concern.

We assess the net health benefit for ruxolitinib cream compared with topical emollients to be *comparable or better* ("C++"). We consider the evidence for the net health benefit for ruxolitinib cream compared with other topical medications to be *insufficient* ("I").

^{*} Not applicable (NA) as placeholder prices were used

Appraisal committee votes on questions of comparative effectiveness and value, along with key policy recommendations regarding pricing, access, and future research are included in the main report; several key policy themes are highlighted below:

- All stakeholders have a responsibility and an important role to play in ensuring that effective new treatment options for patients with atopic dermatitis are introduced in a way that will help reduce health inequities.
- Payers should only use step therapy when it provides adequate flexibility to meet the needs
 of the diverse range of patients with atopic dermatitis and when implementation can meet
 established standards of transparency and efficiency.
- Specialty societies should update treatment guidelines for patients with atopic dermatitis to reflect current treatment options in a form that is easy to interpret and use by clinicians, patients, and payers.
- Manufacturers, payers, and patient advocacy groups should support pricing and rebate reform efforts that will create better rewards for clinical and economic value while also helping patients afford access to the treatments they need.

1. Background

Atopic dermatitis is a common, chronic skin condition with persistent or relapsing lesions that are itchy, inflamed, and dry. Commonly referred to as "eczema," atopic dermatitis affects both children and adults. Symptoms of itching and even pain vary in severity, but can affect sleep, cause psychological distress, and result in difficulty with performance at school or work. The appearance of the skin can also lead to social embarrassment and isolation. The net effect is that atopic dermatitis can have a profound effect on all aspects of patients' lives and those of their family and caregivers. The United States (US), atopic dermatitis is estimated to affect around 11-15% of children and 7-10% of adults. The overall costs associated with atopic dermatitis are estimated to be \$5.3 billion dollars in the US, including over \$1 billion in health care costs. Atopic dermatitis also can lead to work and productivity loss.

Atopic dermatitis is thought to be caused by changes in the barrier properties of the skin and problems with the body's immune response. Patients with atopic dermatitis often have a family history that can also include asthma and allergic rhinitis; atopic dermatitis is also associated with socioeconomic and environmental factors. Atopic dermatitis frequently begins during childhood and persists into adulthood in about 50% of affected children. Diagnosed primarily by its appearance, the skin lesions can be localized or widespread, varying in their location by age, and can come and go or be persistent. When acute, the appearance is of red papules and vesicles with weeping, oozing and crusting. When subacute or chronic, lesions are dry, scaly, or excoriated with skin thickening, erosions, cracking and bleeding. Disease severity is difficult to consistently define because it is based upon the amount and location of skin involved, its appearance, and the subjective impact of symptoms.

Most children with atopic dermatitis have mild disease, with 12-26% having moderate and 4-7% having severe disease. Moderate or severe disease appears to be more common in adults. Having severe disease. Moderate or severe disease appears to be more common in adults. Having severity of atopic dermatitis can also vary by season and geographic region. For all patients with atopic dermatitis, treatment includes maintaining the skin barrier with moisturizers and emollients, avoiding triggers such as heat/cold, low humidity, and known allergens. Topical corticosteroids are recommended for short-term, intermittent use, and long-term maintenance may include the topical calcineurin inhibitors, tacrolimus and pimecrolimus, or the phosphodiesterase 4 (PDE-4) inhibitor, crisaborole. For those with atopic dermatitis not controlled with topical therapies, phototherapy or systemic immunomodulators are used. Short-term use of systemic oral corticosteroids or cyclosporine can be used to more quickly control skin disease, while oral methotrexate, azathioprine or mycophenolate mofetil can be used for long-term control. Dupilumab, an IL-4 receptor antagonist, became available in 2017, is approved in the US for those

ages six and older, and is now a commonly used systemic immunomodulator for moderate- tosevere disease.²⁹

Despite available treatments, many individuals do not respond to multiple different topical and systemic therapies supporting the need for new treatment options.³⁰ This is especially true for children, where there is greater concern about the effects of topical and systemic corticosteroids.³¹

A number of new biologic therapies are available or being evaluated in patients with atopic dermatitis. One new target for therapy is Interleukin (IL)-13.³² Tralokinumab, a monoclonal antibody that blocks IL-13 receptor binding is given subcutaneously and is under investigation for patients with moderate-to-severe atopic dermatitis. It received a Complete Response Letter from the FDA requesting additional data relating to a device component used to inject tralokinumab.¹⁴

Janus kinases (JAKs), cytoplasmic protein tyrosine kinases that are critical for signal transduction to the cell nucleus, are other new targets for therapy. ³³ Oral JAK inhibitors being evaluated for patients with moderate-to-severe atopic dermatitis include abrocitinib, baricitinib, and upadacitinib. Concerns about the safety of oral JAK inhibitors that are approved for other conditions has led the U.S. Food and Drug Administration (FDA) to extend the review period for these drugs. ¹³ A topical JAK inhibitor, ruxolitinib cream is being evaluated for patients with mild-to-moderate atopic dermatitis. The FDA has also extended the review period for ruxolitinib cream. ¹⁵

Table 1.1. Interventions of Interest

Intervention Generic Name (Brand Name)	Mechanism of Action	Delivery Route	Prescribing Information
Abrocitinib	JAK inhibitor	Oral	100-200mg once daily
Baricitinib (Olumiant)	JAK inhibitor	Oral	1-2mg once daily
Upadacitinib (Rinvoq)	JAK inhibitor	Oral	15-30mg once daily
Ruxolitinib Cream	JAK inhibitor	Topical	0.75-1.5% twice daily
Tralokinumab	IL-13 monoclonal	Subcutaneous injection	600mg initial dose then
	antibody		300mg every 2 weeks

JAK: Janus kinase, IL: interleukin

Note: There may be an option for dosing tralokinumab every four weeks in some patients.

2. Patient and Caregiver Perspectives

Discussions with individual patients, caregivers and patient advocacy groups identified important insights and perspectives. Common themes emphasized included: the considerable burden of this chronic condition on patients, caregivers and families; the diversity of the experience with atopic dermatitis especially at different times in one's life; the demands of current treatment and the need for better treatment options; the impact on all aspects of life including school, work and social/family relationships; the importance of measuring outcomes of care that are most meaningful to patients; and the high costs and affordability of care for patients and families.³⁴

Though the majority of those with atopic dermatitis have a milder course that can be adequately managed with topical therapy, this perception may lead to an underappreciation of the profound effect that atopic dermatitis can have on all aspects of a patient's life. The considerable burden of atopic dermatitis reflects its chronic nature (often beginning in childhood and progressing through adolescence and into adulthood), and the unpredictability of disease flares. As such, it not only impacts the patient but also families, caregivers, friends, and relationships. The primary symptom of atopic dermatitis, itch, can lead to a host of additional problems including skin pain and infections as well as disrupting sleep and causing psychological distress including loss of self-esteem, anxiety, depression, and suicidal ideation. Because flares of the disease can lead individuals to search for some behavior or action to explain the worsening, there can be guilt, or it may lead others to blame the patient for the flare. The result is that atopic dermatitis can have a profound impact on life activities, interpersonal relationships and performance at school and work.

The impact of atopic dermatitis can vary depending on many factors, including the age of the patient, leading to a diversity of experiences. For children with atopic dermatitis, interpersonal effects can include bullying by other children and changes in family dynamics among parents and siblings associated with extra time and attention spent by caregivers focused on the patient, leading other children in a household to feel neglected. For adolescents, the impact of atopic dermatitis on appearance was emphasized, leading to self-isolation and insecurities, all affecting social interactions. Across all age groups, atopic dermatitis can impact life activities such as exercise and recreation due to their negative effects on the skin related to excessive sweating or cold/heat exposure. As an allergic condition, atopic dermatitis can also necessitate restrictions on diet that can be difficult.

As a result of the symptoms of atopic dermatitis that can lead to sleep disturbance and daytime fatigue, it can affect performance including that in school and work. For students it can affect school attendance and lead to distraction when in class, negatively impacting developmental milestones. Similarly, atopic dermatitis can affect work through missed days, decreased work

performance (presenteeism), missed promotions, limited career options, and even disability from one's chosen profession. The net result is a financial impact on individuals and families over the course of one's life in terms of educational and work advancement opportunities delayed or lost.

A wide range of deficiencies with currently available topical and systemic treatments for atopic dermatitis were noted. There was broad recognition that current therapies do not address all of the needs of patients with atopic dermatitis. The need for therapies that work quickly, provide sustained relief and are safe for long-term use were highlighted. Though some patients derive benefit from existing therapies, the considerable time and effort involved in applying topical moisturizers and wraps or traveling to and from phototherapy sessions is taxing on patients and their caregivers. Moreover, travel to receive care can be particularly demanding for patients in the US who live outside of large metropolitan areas. For those with mild to moderate disease, there is a need for new topical therapies. Topical steroids can damage skin with prolonged use, while topical calcineurin inhibitors carry a black box warning, and topical phosphodiesterase-4 (PDE-4) inhibitors have limited efficacy; these latter agents can also cause skin discomfort/burning.

For those with moderate to severe disease not adequately managed with topical therapies, oral corticosteroids are commonly used for short courses, but have well-recognized side effects, can have rebound flares when discontinued, and are avoided in younger patients. Other systemic therapies such as cyclosporin, methotrexate and other non-selective systemic immunomodulators have limited benefit and potentially serious side effects. Even dupilumab, the first biologic approved in the US for atopic dermatitis, takes time to begin working, does not help all individuals, and has side effects, such as conjunctivitis that result in some patients discontinuing use. Finally, patients and caregivers commented about the challenge of choosing therapies where the long-term effects are not completely known or may have uncommon but potentially serious side effects.

Patients and caregivers emphasized the importance of having measures of treatment outcomes that are most meaningful to them. Itching and skin pain were seen as the key outcomes, but their impact on sleep, increased distraction, worry and anxiety and other aspects of life varied according to an individual's particular circumstances. For example, some patients reflected that when they were adolescents, appearance was most important to them. As they got older, other issues such as the impact on the skin in terms of pain and infections became more important. Though all recognized atopic dermatitis as a chronic condition, the importance of flares and the need to break cycles of worsening disease was also emphasized. Since many individuals also are impacted by other conditions such as asthma and allergies, and some treatments improve these conditions as well, we heard about the importance of thinking broadly about the benefits of treatments. Since itching is the most burdensome symptom for most patients, the importance of measuring the impact of treatments on itch and associated issues such as sleep disruption are needed. The

importance of comprehensive outcome measures that capture the diversity and impact of atopic dermatitis over time was emphasized.

For many patients and parents, the high cost of care for atopic dermatitis was noted. Topical emollients and wraps are non-prescription and often not covered by health insurance. Even for those with health insurance, the affordability of care is a challenge for patients and families. The chronic nature of atopic dermatitis with copayments and deductibles for numerous doctor visits, multiple trials of different topical therapies, and phototherapy sessions add up quickly. Moreover, newer systemic therapies for atopic dermatitis are very expensive and patients and caregivers face the burden of negotiating insurance coverage policies and the potential for high out of pocket costs.

3. Comparative Clinical Effectiveness

3.1. Methods Overview

Procedures for the systematic literature review (SLR) assessing the evidence on abrocitinib, baricitinib, tralokinumab, and upadacitinib in moderate-to-severe atopic dermatitis and ruxolitinib cream in mild-to-moderate atopic dermatitis are described in Section D1 of the Report Supplement.

Scope of Review

This SLR compares the clinical effectiveness of abrocitinib, baricitinib, tralokinumab, and upadacitinib to topical therapies, dupilumab, and each other for the treatment of moderate-to-severe atopic dermatitis in adolescents and adults. The SLR also compares ruxolitinib cream to topical therapies for the treatment of mild-to-moderate atopic dermatitis in adolescents and adults. The full PICOTS criteria are detailed in Section D1 of the Report Supplement.

Evidence Base

Moderate-to-Severe Population

A total of 58 references met our inclusion criteria for the moderate-to-severe population. ³⁵⁻⁸³ Of these, we identified five randomized controlled trials (RCTs) of abrocitinib (one phase II and four phase III), ^{35-37,39,40,77,84} five RCTs of baricitinib (one phase II and four phase III), ^{63,64} five RCTs of upadacitinib (one phase II and four phase III), ^{69,70,80,81,83} and six RCTs of dupilumab (one phase II and five phase III) that met our inclusion criteria. ^{50-53,56} Of these trials, 21 enrolled adults, where 14 were placebo-controlled monotherapy trials and six were placebo-controlled combination trials that permitted background topical medication. Two head-to-head trials were identified, and these were one placebo- and active-controlled combination trial (JADE COMPARE) and one active-controlled monotherapy trial (Heads Up). Several trials solely enrolled children or adolescents, where one was a placebo-controlled monotherapy trial and two were placebo-controlled combination trials.

Trials that enrolled adults are described first, followed by trials that solely enrolled children and adolescents. Of note, only the FDA-approved dose of dupilumab was evaluated in adults (300 mg once every two weeks).

<u>Evidence Tables G1.3-1.7</u> contain the key study design and baseline characteristics of each trial, while a summary is presented below in Table 3.1. Please note that blacked out data represents

academic-in-confidence data submissions. While most trials enrolled patients ≥18 years old, the pivotal trials for abrocitinib, JADE MONO-1 and JADE MONO-2, and the pivotal trials for upadacitinib, MEASURE UP 1, MEASURE UP 2, and AD-UP enrolled patients ≥12 years old. However, most patients in these trials were ≥18 years old, and we searched for evidence stratified by age. The primary endpoints of the abrocitinib trials, JADE MONO-1, JADE MONO-2, and JADE COMPARE, were measured at 12 weeks, while the remaining trials' primary endpoints were measured at 16 weeks. Trial populations were comparable with respect to age (31-41 years), duration of disease (21-28 years), and disease severity (32%-55% IGA of 4). Primary endpoints varied slightly among the trials but typically consisted of EASI 75 and/or IGA (IGA score of 0/1 or 0/1 and ≥2 points from baseline improvement).

RCTs that only enrolled children or adolescents were limited. LIBERTY AD ADOL enrolled patients 12-17 years and measured its co-primary endpoints of EASI 75 and IGA (IGA score of 0/1 and ≥2 points from baseline improvement) at 16 weeks. JADE TEEN also enrolled patients 12-17 years and measured its co-primary endpoints of EASI 75 and IGA (IGA score of 0/1 and ≥2 points from baseline improvement) at 12 weeks. In contrast, LIBERTY AD PEDS enrolled patients 6-11 years with severe atopic dermatitis and measured its primary endpoint of IGA (IGA score of 0/1) at 16 weeks.

Additional details are available in <u>Section D3 of the Report Supplement</u>.

Table 3.1. Overview of Placebo-controlled Monotherapy and Combination Trials of Abrocitinib, Baricitinib, Tralokinumab, Upadacitinib, and Dupilumab in Adults

Trial	Frial Arms		EASI (Mean)	Mean age, y	Mean Disease Duration, y	IGA Score of 4 (%)		
Abrocitinib								
JADE MONO- 1*	ABRO 100 mg ABRO 200 mg PBO	387	30.2	32.4	23.4	40.7		
JADE MONO- 2*	ABRO 100 mg ABRO 200 mg PBO	391	28.5	35.1	21.0	32.2		
JADE COMPARE	ABRO 100 mg + TCS ABRO 200 mg + TCS DUP 300 mg + TCS PBO + TCS	837	30.9	37.7	22.7	35.4		
Gooderham 2019	ABRO 100 mg ABRO 200 mg PBO	167	25.6	40.8	23.0 ^v	40.8		
		Ва	ricitinib					
BREEZE-AD 1	BARI 1 mg BARI 2 mg BARI 4 mg** PBO	624	31.0	35.7	25.7	41.8		
BREEZE-AD 2	BARI 1 mg BARI 2 mg BARI 4 mg** PBO	615	33.5	34.5	24.0	50.5		
BREEZE-AD 5	BARI 1 mg BARI 2 mg PBO	440	27.1	39.7	23.7	41.7		
BREEZE-AD 7	BARI 2 mg + TCS PBO + TCS	329	29.57	33.8	24.03	45.0		
Guttman- Yassky 2018	BARI 4 mg + TCS** BARI 2 mg + TCS PBO + TCS	104	21.23 ^y	36.5	22.03	NR		
		Tral	okinumab					
ECZTRA 1	TRA 300 mg PBO	802	29.3	37.0	27.5	50.9		
ECZTRA 2	TRA 300 mg PBO	794	28.9 ^y	32.0	25.3	49.2		
ECZTRA 3	TRA 300 mg + TCS PBO + TCS	380	25.5	36.0	26.0	46.3		
		Upa	adacitinib		-			

Trial	Arms	Sample Size (N)	EASI (Mean)	Mean age, y	Mean Disease Duration, y	IGA Score of 4 (%)
MEASURE UP 1*	UPA 15 mg UPA 30 mg PBO	847	29.5	34.0	20.7	45.2
MEASURE UP 2*	UPA 15 mg UPA 30 mg PBO	836	29.1	33.6	24.3	54.9
AD-UP*	UPA 15 mg + TCS UPA 30 mg + TCS PBO + TCS	901	29.6	34.1	23.4	52.9
Heads Up	DUP 300 mg UPA 30 mg	692	29.8	36.8	24.3	50.2
Guttman- Yassky 2020	UPA 7.5 mg** UPA 15 mg UPA 30 mg PBO	167	25.6	40.8	23.0 ^y	40.8
		Du	pilumab			
LIBERTY AD SOLO 1	DUP 300 mg Q2W DUP 300 mg QW PBO	671	30.7	38.7	26.7	48.3
LIBERTY AD SOLO 2	DUP 300 mg Q2W DUP 300 mg QW PBO	708	29.4	34.7	24.8	48.3
LIBERTY AD CHRONOS	DUP 300 mg QW + TCS * DUP 300 mg + TCS PBO + TCS	740	29.8*	31.2 ^y	26.7 ^v	47.7
Thaci 2016	DUP 300 mg Q4W DUP 300 mg Q2W		31.9	37.0	28.0	47.3

All values are pooled by ICER. All timepoints at 16 weeks except JADE MONO-1, JADE MONO-2, (12 weeks) and COMPARE (12/16 weeks). Bolded arms were included in the network meta-analyses. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, N: total number, NR: not reported, QW: weekly, Q2W: every two weeks, Q4W: every four weeks, TCS: topical corticosteroid, TRA: tralokinumab, UPA: upadacitinib, Y: year, %: percent. *pooled estimates from this trial were in patients 12 and older, 'median, **included in pooled values here, but not included in comparative clinical effectiveness evaluation.

Mild-to-Moderate Population

A total of 21 references met our inclusion criteria for the mild-to-moderate population. ^{73,74,85-103} Of these, we identified two phase III, placebo-controlled RCTs of ruxolitinib cream ⁹⁷ and one phase IIb placebo- and active-controlled (topical triamcinolone acetonide) RCT of ruxolitinib cream. ^{86,87} While no new trials of crisaborole for this indication were identified since the prior ICER Report in 2017, two phase III RCTs of this agent met inclusion criteria in our previous review. ⁹⁵ Differences in trial populations, outcome definitions, and length of follow-up do not permit us to quantitatively compare outcomes of trials of ruxolitinib cream with crisaborole or topical calcineurin inhibitors.

Evidence Tables G1.50-1.53 contain the key study design and baseline characteristics of each trial, while a summary is presented below in Table 3.2 for the ruxolitinib cream trials. TRuE-AD1 and TRuE-AD2 were identical phase III multicenter, double-blind, vehicle (placebo)-controlled RCTs conducted in North America and Europe among 631 and 618 patients ≥12 years old, respectively, while Kim 2020 was a phase IIb multicenter, double-blind, dosing-ranging RCT conducted in North America among 307 patients ≥18 years old. The trials had similar baseline characteristics (see Table 3.2.), and the primary endpoints of TRuE-AD1 and TRuE-AD-2 were the proportion of patients achieving IGA (score of 0/1 with ≥2-point improvement from baseline) at week eight. In contrast, the primary endpoint of Kim 2020 was the percentage change from baseline in EASI score at week four in patients treated with ruxolitinib cream 1.5% twice a day compared with placebo. Additional details are available in Section D3 of the Report Supplement.

Table 3.2. Overview of Trials of Ruxolitinib Cream

Intervention	Trial	Arms	Sample Size (N)	Treatment Duration (Weeks)	EASI (Mean)	Median Age, y	Disease Duration, Y	IGA Score of 3 (%)
	TRuE AD 1	Vehicle (PBO) RUX 0.75% RUX 1.5%	631	8 weeks	7.8	31.8	16	75.8
Ruxolitinib Cream	TRuE AD 2	Vehicle (PBO) RUX 0.75% RUX 1.5%	618	8 weeks	8	34.2	16.1	74
	Phase II Kim 2020	Vehicle (PBO) RUX 1.5% BID TRI 0.1%	307	8 weeks	8.4	35.0	20.8	NR

TRuE-AD 1 and 2 enrolled patients 12 and older, while the phase II study enrolled patients 18 and older. BID: twice-daily, N: total number, NR: not reported, PBO: non-medicated cream, RUX: ruxolitinib, TRI: triamcinolone acetonide cream, Y: years, %: percent

3.2. Results for Moderate-to-Severe Population

The key clinical benefits and harms of abrocitinib, baricitinib, tralokinumab, and upadacitinib in moderate-to-severe atopic dermatitis as well as key network meta-analysis (NMA) results are described in Section 3.2. Data synthesis and quantitative analyses, such as additional NMAs, are described in Section D2 of the Report Supplement. Additional results are presented in Sections D2 and D3 of the Report Supplement.

Clinical Benefits

Abrocitinib

Abrocitinib substantially increased the likelihood of achieving EASI 75 and IGA response in a dose dependent manner compared to placebo. Results for other EASI thresholds and other patient reported outcomes were generally consistent with results for EASI 75 and IGA. In comparison with dupilumab, outcomes were similar on most measures, though outcomes with abrocitinib 200 mg were somewhat better and itch improved more at 2 weeks. Though few adolescents were included in these trials, they appeared to have similar outcomes compared to adults. Long-term data were limited.

In three monotherapy trials of abrocitinib 200 mg, 61% to 65% of patients achieved EASI 75, compared with 10%-15% in the placebo arms of those trials. EASI 75 was achieved by 40%-45% of patients with abrocitinib 100 mg. Tests of statistical significance comparing abrocitinib 200 mg and 100 mg dosing were not reported. EASI 90 was achieved by 38%-52% of patients with abrocitinib 200 mg, compared with 4%-10% of patients with placebo. EASI 90 was achieved by 19%-26% of patients with abrocitinib 100 mg. IGA response, defined as an IGA score of 0 or 1 and an improvement of 2 points or more from baseline, was achieved by 38%-44% of patients with abrocitinib 200 mg, compared to 6%-9% with placebo. In the abrocitinib 100 mg arms, IGA response was achieved by 24%-30% of patients.

One trial compared abrocitinib 200 mg, abrocitinib 100 mg, dupilumab, and placebo in patients also treated with topical corticosteroids.³⁷ IGA response, as defined above, and EASI 75, both measured at week 12 were the co-primary outcomes. IGA response was achieved by 48% of patients with abrocitinib 200 mg, 37% with abrocitinib 100 mg, 37% with dupilumab, and 14% with placebo. The percentage of patients achieving EASI 75 with abrocitinib 200 mg was 70% compared with 59% with abrocitinib 100 mg, 58% with dupilumab, and 27% with placebo. Responses in the abrocitinib arms were statistically superior to placebo, but statistical significance was not reported compared to dupilumab at 12 weeks. However, at 16 weeks, there were no statistically significant differences in

EASI 75 and IGA response between the abrocitinib arms and dupilumab apart from the IGA response being greater for the abrocitinib 200 mg arm (see Report Supplement D3).

In the monotherapy trials, more patients experienced a \geq 4-point improvement on the patient reported Peak Pruritus Numerical Rating Scale (PP-NRS), a measure of itching, with abrocitinib 200 mg and 100 mg than with placebo (55%-64% and 38%-50% vs. 12%-26%, respectively). 35,36,40 Concordant with the EASI and IGA results in the trial versus dupilumab, at week 16 more patients achieved a \geq 4-point improvement with abrocitinib 200 mg, abrocitinib 100 mg, and dupilumab (63% and 48% and 55%), compared to placebo (29%). 37 Measurement of PP-NRS at two weeks was a key secondary outcome in this trial and abrocitinib 200 mg (49%), but not abrocitinib 100 mg (32%), was statistically superior to dupilumab (27%) for this outcome providing some evidence that resolution of itch may occur more quickly with abrocitinib 200 mg than dupilumab.

Other patient reported outcomes showed similar favorable results compared to placebo. In two monotherapy trials, patients had greater reductions from baseline on the Dermatology Life Quality Index (DLQI) with abrocitinib 200 mg (-9 to -10) and 100 mg (-7 to -8) than placebo (-4; p<0.05 for comparisons with both doses of abrocitinib), where a 4-point difference is considered to be clinically meaningful. 35,36,104 In those trials, patients had greater reductions from baseline on the Patient-Oriented Eczema Measure (POEM), a self-reported measure of symptom severity, with abrocitinib 200 mg (-11) and abrocitinib 100 mg (-7 to -9), compared with placebo (-4; p<0.05 for both comparisons with placebo), where a 3-4-point improvement is considered clinically meaningful. 105 The Scoring Atopic Dermatitis (SCORAD), an instrument combining objective measures of area and intensity with subjective symptoms including itch and sleeplessness, was also evaluated in the trials. Results showed there were greater reductions from baseline with abrocitinib 200 mg (-56% to -70%) and abrocitinib 100 mg (-46% to -50%), compared to placebo (-23% to -29%; p<0.002, for comparisons with both doses of abrocitinib).^{40 36} In addition, pooled analysis of the monotherapy trials showed that patients had greater numeric reductions from baseline on the Hospital Anxiety and Depression Scale (HADS) with abrocitinib 200 mg and 100 mg doses than placebo for both depression and anxiety (anxiety: -2.0 and -1.7 vs. -1.0; depression: -1.7 and -1.3 vs. – 0.1; statistical significance not reported). 106

Similar results on patient reported outcomes were reported for the trial that compared abrocitinib to dupilumab and placebo. For example, patients had greater improvements from baseline on the DLQI with abrocitinib 200 mg (-12; 95% CI: -12 to -11), abrocitinib 100 mg (-9; 95% CI: -10 to -8), and dupilumab (-11; 95% CI: -11 to -10) compared to placebo (-6; 95% CI: -7 to -5). 104

At the time of this report, limited long-term data for abrocitinib suggest maintenance of EASI 75, IGA response, and ≥4-point improvement on the patient reported PP-NRS at 48 weeks (See Report Supplement D3).^{76,107}

Baricitinib

Baricitinib increased the likelihood of achieving EASI 75 and IGA response compared to placebo. Results for other EASI thresholds and other patient reported outcomes were generally consistent with results for EASI 75 and IGA. Differences compared to placebo were modest with baricitinib 1 mg and not always statistically significant. There are limited long-term data and baricitinib was not studied in adolescents.

We do not report baricitinib 4 mg arm trial results because this dose is not anticipated to be used in the U.S. In three monotherapy trials of baricitinib 2 mg, 18%-30% of patients achieved EASI 75, compared with 6%-9% in the placebo arms of those trials. EASI 75 was achieved by 13%-17% of patients with baricitinib 1 mg. Tests of statistical significance comparing baricitinib 2 mg and 1 mg were not reported. EASI 90 was achieved by 9%-21% of patients with baricitinib 2 mg, compared to 3%-5% of patients with placebo. In the baricitinib 1 mg arms of those trials, 6%-9% of patients achieved EASI 90. IGA response, defined as an IGA score of 0 or 1 *and* an improvement of 2 points or more from baseline, was achieved by 11%-24% in the baricitinib 2 mg arms, compared with 5% in the placebo arms. IGA response was achieved by 9%-13% of patients with baricitinib 1 mg.

Similar incremental improvements beyond placebo were reported in two trials that compared baricitinib 2 mg with placebo in patients also treated with topical corticosteroids. 46,48 For example, 30%-43% of patients achieved EASI 75 with baricitinib 2 mg compared to 20%-23% with placebo. IGA response, as defined above, was achieved by 22%-24% of patients with baricitinib 2 mg, compared with 8%-15% of patients with placebo.

In the monotherapy trials, more patients experienced a \geq 4-point improvement on the patient reported PP-NRS with baricitinib 2 mg and baricitinib 1 mg than with placebo (12%-25% and 6%-16% vs. 5%-7%, respectively). ^{42,45} In addition, patients had greater improvements from baseline on nighttime awakenings due to itching, as measured by the atopic dermatitis sleep scale (ADSS), with baricitinib 2 mg than placebo (-1 to -1.2 vs. -0.4 to -0.8; statistical significance not reported). ^{49,108,109} In one combination trial, more patients achieved a PP-NRS \geq 4-point improvement with baricitinib 2 mg than placebo (38% vs. 20%). ⁴⁶

In the monotherapy trials, patients had greater reductions from baseline on the DLQI with baricitinib 2 mg and 1 mg than placebo (-4 to -7 and -5 to -6 vs. -3 to -4, respectively; p<0.05 for both comparisons), where a 4-point difference is considered to be clinically meaningful. ^{42,45,104} In these trials, patients had greater reductions from baseline on POEM with baricitinib 2 mg and 1 mg compared to placebo (-6 to -7 and -4 to -5 vs. -2 to -3, respectively; p<0.05 for both comparisons), where a 3-4-point improvement is considered clinically meaningful. ¹⁰⁵. Similarly, patients had greater reductions from baseline on SCORAD with baricitinib 2 mg than placebo in two trials that

reported this outcome (-22% to -28% vs. -13%-14%, respectively; p<0.05); differences between baricitinib 1 mg and placebo were not statistically significant.⁴² In addition, patients had greater numeric reductions from baseline on HADS Anxiety (-1.9 to -2.6 vs. 0.9 to 2.0) and HADS Depression (-1.0 to -1.7 vs. 0.3 to 1.3) with baricitinib 2 mg than placebo, although statistical significance was not reported.^{49,108,109} Trial results also showed a greater improvement with baricitinib 2 mg on work productivity measures (absenteeism, presenteeism, work productivity loss, and activity impairment) than placebo. ^{49,108,109}

One combination trial reported a greater reduction from baseline on the DLQI with baricitinib 2 mg than placebo (-8 vs. -6, respectively; p=0.022), where a 4-point improvement is considered clinically meaningful. 46,104 The phase II trial reported a greater reduction in this outcome with baricitinib 2 mg compared to placebo that did not reach statistical significance (-6 vs. -7, respectively; p>0.05). 48

At the time of this report, limited long-term data for baricitinib suggest maintenance of EASI 75 and IGA response at 52-68 weeks. ^{43,44,82} These are described in greater detail in Report Supplement D3.

Tralokinumab

Tralokinumab increased the likelihood of achieving EASI 75 and IGA response compared to placebo. Results for other EASI thresholds and other patient reported outcomes were generally consistent with results for EASI 75 and IGA. There are limited long-term data and tralokinumab was not studied in adolescents.

In two placebo-controlled monotherapy trials of tralokinumab, 25%-33% of patients achieved EASI 75, compared with 11%-13% of patients in the placebo arms of those trials. ⁶³ EASI 90 was achieved by 15%-18% of patients with tralokinumab, compared with 4%-6% of patients with placebo. IGA response, defined as an IGA score of 0 or 1, was achieved by 16%-22% of patients in the tralokinumab arms, compared with 7%-11% in the placebo arms.

In a trial in patients treated with topical corticosteroids, tralokinumab was more effective than placebo. ⁶⁴ For example, the percentage of patients achieving EASI 75 with tralokinumab was 56% compared with 36% with placebo. IGA response, also defined as an IGA score of 0 or 1, was 39% with tralokinumab compared with 26% with placebo.

In the placebo-controlled monotherapy trials, more patients experienced a \geq 4-point improvement on the patient reported PP-NRS with tralokinumab than with placebo (20%-25% vs. 10%, respectively).⁶³ Concordant with the EASI and IGA results in the combination trial, more patients achieved a \geq 4-point improvement with tralokinumab than placebo (45% vs. 34%).⁶⁴

In one of the monotherapy trials, patients had greater reductions from baseline on the DLQI with tralokinumab than placebo (-7 vs. -5; p=0.002); however, this difference is less than the difference considered clinically meaningful (4-point improvement).^{63,104} In the other monotherapy trial, patients had greater reductions in this outcome with tralokinumab than placebo that also met this clinically meaningful difference (-9 vs. -5; p<0.001).^{63,104} In both trials, patients had greater reductions from baseline on POEM with tralokinumab compared to placebo (-8 to -9 vs. -3 to -4; p<0.001), where a 3-4-point improvement is considered clinically meaningful.¹⁰⁵. Similarly, in both trials, patients had greater reductions from baseline on SCORAD with tralokinumab than placebo (-25% to -28% vs. -14% to -15%; p<0.001). In both trials, patients had greater reductions from baseline in the weekly average of eczema-related sleep interference NRS with tralokinumab than placebo (-3 vs. -2; p=0.007). In addition, data submitted as academic-in-confidence by the manufacturer suggest a greater reduction from baseline on HADS total score with tralokinumab compared to placebo; however, the difference was not statistically different in one trial.⁶⁵ Similar results were reported for the combination trial. For example, patients had greater reductions from baseline on the DLQI with tralokinumab than placebo (-12 vs. -9; p<0.001).^{64,104}

At the time of this report, long-term data for tralokinumab are limited. Data from the 36-week maintenance periods of the two placebo-controlled monotherapy trials suggest maintenance of EASI 75 and IGA responses at 52 weeks, while similar results from the 32-week maintenance period of the placebo-controlled combination trial were also reported (see Report Supplement D3). 63,64 Additionally, a lower dosing frequency of tralokinumab (300mg every 4 weeks) was evaluated among 16-week responders, and outcomes were similar but slightly worse than for those continued on the higher dose. 63

Upadacitinib

Upadacitinib substantially increased the likelihood of achieving EASI 75 and IGA response in a dose dependent manner compared to placebo. Results for other EASI thresholds and other patient reported outcomes were generally consistent with results for EASI 75 and IGA. Compared with dupilumab, outcomes for upadacitinib 30 mg were similar or somewhat better on reported measures. Though few adolescents were included in these trials, they appeared to have similar outcomes compared to adults. No long-term data were identified.

In three monotherapy trials of upadacitinib 30 mg, 69%-80% of patients achieved EASI 75, compared with 10%-16% in the placebo arms of those trials. ^{69,80} In those same trials, 52%-70% achieved EASI 75 with upadacitinib 15 mg. No tests of statistical significance comparing upadacitinib 30 mg to 15 mg dosing were reported in these trials. EASI 90 was achieved by 50%-66% of patients with upadacitinib 30 mg, compared with 2%-8% of patients with placebo. Further, EASI 90 was achieved by 26%-53% of patients with upadacitinib 15 mg. IGA response, defined as an

IGA score of 0 or 1 *and* an improvement of 2 points or more from baseline, was achieved 50%-62% of patients with upadacitinib 30 mg, compared with 2%-8% of patients with placebo. In the upadacitinib 15 mg arms, 31%-48% achieved IGA response.

In a head-to-head monotherapy trial, more patients treated with upadacitinib 30 mg than dupilumab achieved EASI 75 (71% vs. 61%; p = 0.006) and EASI 90 (61% vs. 39%; p<0.001) at 16 weeks.⁸³ At the time of this Report, results for IGA response were not available.

In a trial that compared upadacitinib to placebo in patients also treated with topical corticosteroids, the percentage of patients achieving EASI 75 with upadacitinib 30 mg was 77% compared with 65% with upadacitinib 15 mg and 26% with placebo. ⁸¹ IGA response, as defined above, was achieved by 59% of patients with upadacitinib 30 mg, 40% with upadacitinib 15 mg, and 11% with placebo.

In the placebo-controlled monotherapy trials, more patients experienced a \geq 4-point improvement on the patient reported PP-NRS with upadacitinib 30 mg and 15 mg than with placebo (53%-60% and 42%-59% vs. 6%-12%, respectively). ^{69,80} More patients achieved a \geq 4-point improvement with upadacitinib 30 mg than dupilumab (55% vs. 36%). ⁸³ Similarly, in the trial that compared upadacitinib to placebo in patients also treated with topical corticosteroids, more experienced achieved a \geq 4-point improvement with upadacitinib 30 mg and 15 mg than placebo (64% and 52% vs. 15%). ⁸¹

Other patient reported outcomes showed similar favorable results compared to placebo. In two of the monotherapy trials, DLQI response, defined as an improvement of 4-points or more from baseline, was achieved by 78%-82% of patients on upadacitinib 30 mg, 72%-75% of patients on upadacitinib 15 mg, compared with 28%-29% of patients on placebo. 80 In those trials, POEM response, defined as an improvement of 4-point or more from baseline, was achieved by 81%-84% of patients on upadacitinib 30 mg, 71%-75% of patients on upadacitinib 15 mg, compared with 23%-29% of patients on placebo. 80 In another trial, patients had greater reductions from baseline on POEM with upadacitinib 30 mg and 15 mg compared to placebo (-12 and -9 vs. -2, respectively; p≤0.001 for both comparisons), where a 3-4-point improvement is considered clinically meaningful.^{69,105} Similarly, patients had greater reductions from baseline on SCORAD with upadacitinib 30 mg and 15 mg compared to placebo (-60% to -73% and -47% to -66% vs. -12% to -33%; p<0.001 for both comparisons). ^{69,80,105} In addition, greater proportions of patients achieved clinically meaningful improvement in HADS-anxiety and HADS-depression with upadacitinib 30 mg compared to placebo (49% to 56% vs. 11% to 14%; p<0.0001). 80 Clinical meaningful improvement was defined in those trials as a HADS anxiety or HADS depression score of <8, assessed in patients with HADS anxiety score of ≥8 or HADS depression score of ≥8 at baseline. 80 At the time of this report, these patient-reported outcomes were not reported in the trial that compared upadacitinib to placebo in patients receiving topical corticosteroids.

No long-term evidence was identified for upadacitinib at the time of this report.

Network Meta-Analysis (NMA) Results of Monotherapy Trials

For quantitative indirect comparisons, the monotherapy placebo-controlled trials of the agents were felt to provide the most comparable results. Here, we present the NMA results of EASI 75 and EASI 90 from the monotherapy trials (15 trials). Refer to the <u>Report Supplement D2</u> for more details on the methods and trials included and the results of NMA on other outcomes (EASI 50, IGA response, and PP-NRS ≥4-point improvement) on these trials. We also present information on the NMAs of combination trials (6 trials) in the Report Supplement (see Report Supplement D2).

EASI 75 and EASI 90

For the EASI NMA (15 trials), we present the results of the unadjusted random effect model, given its better fit for the model relative to the adjusted model (see Report Supplement D2). All interventions showed statistically significantly greater EASI 75 and EASI 90 responses than placebo and baricitinib 1 mg (Tables 3.4 and 3.5). Compared to placebo, interventions were 1.5 to 5.7 times more likely to achieve EASI 75 (Table 3.4) and 1.8 to 9.6 times more likely to achieve EASI 90 (Table 3.5). Upadacitinib 30 mg was more likely to achieve EASI 75 and EASI 90 than the other interventions; however, upadacitinib 30 mg was not statistically better than abrocitinib 200 mg. Additionally, there were no statistically significant differences with abrocitinib (both doses) and upadacitinib 15 mg compared to dupilumab. In comparison, dupilumab showed statistically significantly greater EASI 75 and EASI 90 responses than tralokinumab and baricitinib (both doses).

Based on the NMA, the expected proportion of patients who achieved EASI 75 was 12% for placebo, 49% for dupilumab, 40% for abrocitinib 100 mg, 58% for abrocitinib 200 mg, 19% for baricitinib 1 mg, 29% for baricitinib 2 mg, 31% for tralokinumab, 55% for upadacitinib 15 mg, and 67% for upadacitinib 30 mg (see Table 3.3).

Table 3.3: NMA Results. Proportions of patients achieving EASI 50, 75, and 90 thresholds in Monotherapy RCTs.

Treatment	EASI 50	EASI 75	EASI 90
	Me	edian proportion (95%	Crl)
Placebo	0.21 (0.20 – 0.23)	0.12 (0.1 -0.13)	0.05 (0.04 - 0.06)
Dupilumab 300 mg Q2W	0.64 (0.58 – 0.70)	0.49 (0.42 – 0.55)	0.32 (0.27 – 0.38)
Abrocitinib 100 mg	0.55 (0.45 – 0.65)	0.40 (0.30 -0.50)	0.24 (0.17 – 0.33)
Abrocitinib 200 mg	0.73 (0.64 – 0.81)	0.58 (0.49 – 0.68)	0.41 (0.32 -0.52)
Baricitinib 1 mg	0.31 (0.25 – 0.39)	0.19 (0.14 -0.25)	0.09 (0.07 – 0.14)
Baricitinib 2 mg	0.44 (0.36 – 0.52)	0.29 (0.23 – 0.37)	0.16 (0.12 – 0.22)
Tralokinumab 300 mg	0.46 (0.38 – 0.53)	0.31 (0.24 – 0.38)	0.17 (0.13 – 0.23)
Upadacitinib 15 mg	0.70 (0.64 – 0.76)	0.55 (0.48 – 0.61)	0.38 (0.31 – 0.45)
Upadacitinib 30 mg	0.80 (0.75 – 0.84)	0.67 (0.61 – 0.73)	0.50 (0.44 -0.57)

Table 3.4. Relative Risks for EASI 75 in Monotherapy RCTs in Adults

UPA 30 mg								
1.15 (0.97-1.40)	ABRO 200 mg							
1.22 (1.10 -1.37)	1.06 (0.86-1.28)	UPA 15 mg						
1.38 (1.23-1.56)	1.20 (0.97-1.46)	1.13 (0.97-1.32)	DUP 300mg Q2W					
1.70 (1.34-2.23)	1.47 (1.25-1.78)	1.39 (1.08-1.85)	1.23 (0.95-1.64)	ABRO 100 mg				
2.18 (1.77-2.77)	1.89 (1.45-2.49)	1.79 (1.42-2.29)	1.58 (1.25-2.03)	1.29 (0.93-1.76)	TRA 300 mg			
2.28 (1.81-2.95)	1.97 (1.50-2.62)	1.86 (1.47-2.43)	1.64 (1.28-2.15)	1.34 (0.96-1.85)	1.04 (0.77-1.41)	BARI 2 mg		
3.53 (2.65-4.79)	3.06 (2.21-4.24)	2.88 (2.14-3.95)	2.54 (1.88-3.49)	2.07 (1.42-2.98)	1.61 (1.13-2.29)	1.54 (1.20-2.01)	BARI 1 mg	
5.71 (5.13-6.38)	4.95 (4.11-5.85)	4.67 (4.08-5.31)	4.13 (3.60-4.70)	3.36 (2.60-4.21)	2.61 (2.09-3.18)	2.50 (1.97-3.11)	1.62 (1.22-2.12)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table 3.5. Relative Risks for EASI 90 in Monotherapy RCTs in Adults

UPA 30 mg								
1.23 (0.96-1.61)	ABRO 200 mg							
1.33 (1.15-1.56)	1.09 (0.81-1.43)	UPA 15 mg		_				
1.58 (1.35-1.87)	1.29 (0.96-1.69)	1.18 (0.96-1.47)	DUP 300mg Q2W					
2.08 (1.51-2.98)	1.70 (1.36-2.17)	1.57 (1.11-2.28)	1.32 (0.94-1.93)	ABRO 100 mg				
2.89 (2.19-3.95)	2.36 (1.65-3.39)	2.17 (1.60-3.0)	1.83 (1.34-2.54)	1.39 (0.91-2.09)	TRA 300 mg		_	
3.05 (2.26-4.26)	2.49 (1.72-3.61)	2.29 (1.67-3.23)	1.93 (1.39-2.71)	1.47 (0.95-2.22)	1.06 (0.71-1.55)	BARI 2 mg		_
5.31 (3.69-7.79)	4.32 (2.85-6.56)	3.98 (2.72-5.9)	3.35 (2.28-4.99)	2.54 (1.57-4.04)	1.83 (1.17-2.84)	1.73 (1.26-2.42)	BARI 1 mg	
9.60 (8.32-11.17)	7.83 (6.05-9.87)	7.21 (6.0-8.6)	6.08 (5.08-7.22)	4.61 (3.29-6.25)	3.32 (2.5-4.27)	3.14 (2.32-4.14)	1.81 (1.27-2.54)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Harms

Most adverse events (AEs) and treatment-emergent adverse events (TEAEs) observed in the trials were of mild-to-moderate severity (see <u>Report Supplement Tables D3.4-3.7</u>). Included in the most commonly reported AEs with greater incidence than placebo were nausea, conjunctivitis, and herpetic infection. The incidence of discontinuation due to AEs or TEAEs and the incidence of serious adverse events (SAEs) were low and were generally similar among these agents.

Although the incidence of SAEs in the trials of JAK inhibitors for this indication was low, long-term data are limited and evidence from trials evaluating JAK inhibitors at longer time points for other indications suggest an increased risk of SAEs, such as reactivation of herpes zoster, malignancy, thromboembolic events, and cardiovascular events.³³ Additionally, baricitinib and upadacitinib carry black box warnings for serious infections, malignancies, and thrombosis.^{110,111} More information on the harms of the interventions is available in Evidence Tables G1.42-1.47 of the Report Supplement.

At the time of the <u>2017 ICER Report</u>, long-term safety for dupilumab were limited. Since then, long-term safety data over three years from an open-label extension were reported, and these results supporting the safety of dupilumab were consistent with trials of up to 52 weeks (see <u>Tables D3.6</u> and D3.7 in the Report Supplement).^{50,112}

Subgroup Analyses and Heterogeneity

We examined outcomes among patient subgroups of interest based on age (children 6 to 11 years old, adolescents 12-17 years old, and adults greater than 18 years old) and disease severity (moderate and severe).

Patient Age

Trials of baricitinib and tralokinumab did not include patients younger than 18 years old. One trial of abrocitinib solely enrolled patients 12-17 years old, while several trials of abrocitinib and upadacitinib trials enrolled patients 12 years and older, and data on subgroups of adolescent patients in those trials were obtained from conference presentations or manufacturers as academic-in-confidence data(see Report Supplement Tables D3). 39,41,70,77 Results from these trials were qualitatively similar to results of patients greater than 18 years old in these trials and from the dupilumab trial, LIBERTY AD ADOL,52 which enrolled adolescent patients (see Report Supplement Tables D3.8-3.11).

Disease Severity

Subgroup analyses based on disease severity at baseline mostly provided by manufacturers as academic-in-confidence suggest qualitatively better outcomes in patients with severe disease compared to those with moderate disease with abrocitinib, baricitinib, and tralokinumab (see <u>Evidence Tables G1.25-1.42</u>). 39,44,65 No evidence stratified by disease severity was identified for upadacitinib.

Uncertainty and Controversies

There is no well-defined classification for "moderate-to-severe" atopic dermatitis and how it differs from those with "mild-to-moderate" disease. This results in differences in study populations among trials and the varying responses seen for those receiving placebo treatment.

Abrocitinib, baricitinib, tralokinumab, and upadacitinib are therapies with novel mechanisms of action affecting the body's immune system, and we lack adequate long-term safety data for patients with atopic dermatitis. Although SAEs were rare in the phase III atopic dermatitis trials of abrocitinib, baricitinib, and upadacitinib, worrisome side effects for oral JAK inhibitors approved and in use for other conditions have led the FDA to place boxed warnings on this class of agents. Presumably because of these concerns, the FDA announced in April 2021 that they are extending the review period for abrocitinib, baricitinib, and upadacitinib.¹³

Although patients with atopic dermatitis can have disease activity that flares and remits over time, suggesting that intermittent use of these therapies may be possible, clinical experts we spoke with felt that they will be used for long periods in patients with clinical response and tolerability.

Although tralokinumab is not a JAK inhibitor, lack of long-term data results in some concerns about safety for this novel IL-13 antagonist. Though dupilumab is an IL-4 receptor alpha antagonist, it inhibits IL-4 and IL-13 signaling and suggests that long-term safety data for dupilumab may also apply to tralokinumab.

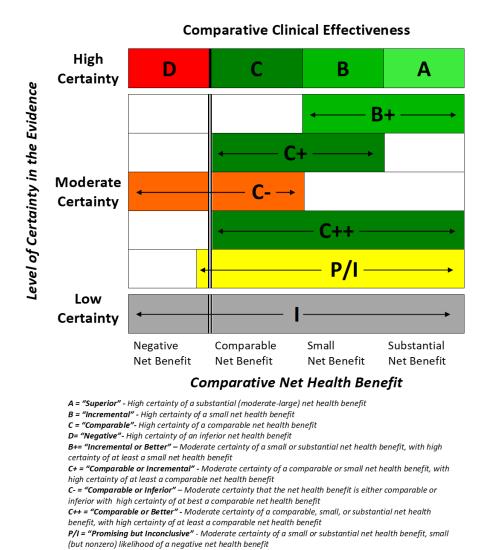
We primarily used indirect quantitative methods (NMAs) to compare abrocitinib, baricitinib, tralokinumab, and upadacitinib to each other because there were no head-to-head studies. Such indirect analyses have more uncertainty than had the therapies been compared directly. Only two trials compared interventions to dupilumab (JADE COMPARE for abrocitinib and Heads Up for upadacitinib).

The pivotal phase II and III RCTs compared the active agents to placebo as monotherapy during the 16-week study periods (12 weeks for the abrocitinib trials). These trials represent the best evidence for the efficacy of the active therapies and were used in our primary NMA analyses. Other trials comparing these new drugs to placebo along with the use of topical steroids and/or calcineurin

inhibitors may better reflect benefit as used in routine practice since new therapy is often added to existing topical treatments. However, differences among trials that included the use of background topical therapy led us to consider these trials separately from the placebo trials in our NMA analyses. The choice of our primary NMA results using trials only with placebo and not with topical therapies likely reflects a best-case view of the benefit of these new therapies. This is supported by the lower risk ratios in the NMAs for trials that include topical therapies. We examined doses for the new therapies we anticipate may be approved for use including 1 mg of baricitinib that is recommended for rheumatoid arthritis patients with moderate renal impairment.

There is limited information available about the relative benefits and harms of these new therapies in important subgroups including patients with moderate versus severe atopic dermatitis and adolescents aged 12-17. Few trials have yet reported outcomes separately for patients with moderate versus severe atopic dermatitis at baseline, so it is uncertain whether the treatment benefit differs based upon baseline severity.

The onset of action may also differ among these drugs. Specifically, abrocitinib assessed its primary outcome at 12 weeks, whereas the other drugs used 16 weeks. In the JADE COMPARE trial of abrocitinib versus dupilumab, abrocitinib appeared to improve outcomes more quickly than dupilumab even though outcomes were similar by 16 weeks.


Given the large impact of atopic dermatitis in African-Americans and the importance of skin appearance on outcomes of treatment more broadly, ¹¹³ few trials included a sizable number of patients with darker skin complexions, and we are not aware of any trial that has reported outcomes among those with darker skin complexion.

Patients with atopic dermatitis often have other allergic conditions such as rhinitis and asthma. Dupilumab has been shown to be beneficial in patients with atopic dermatitis and these other conditions, but it is not known how abrocitinib, baricitinib, tralokinumab, and upadacitinib affect patients who also have allergic rhinitis or asthma.

Summary and Comment

An explanation of the ICER Evidence Rating Matrix (Figure 3.2) is provided in <u>Section D1 of the</u> Report Supplement.

Figure 3.2. ICER Evidence Rating Matrix

I = "Insufficient" - Any situation in which the level of certainty in the evidence is low

Results from clinical trials and from our NMAs suggest that abrocitinib, baricitinib, tralokinumab, and upadacitinib improve outcomes of patients with atopic dermatitis compared to topical emollients alone (placebo). These outcomes included improving the severity of atopic dermatitis and patient reported itch and sleep. Similar favorable results for abrocitinib, baricitinib, tralokinumab, and upadacitinib are seen in trials that permitted use of topical medications. There

appear to be some differences among these medications in terms of their effectiveness, with abrocitinib and upadacitinib having more favorable outcomes than baricitinib and tralokinumab at the doses studied in the trials.

With regard to comparisons with dupilumab, direct comparisons with abrocitinib and upadacitinib and our NMAs suggest that higher doses of upadacitinib and possibly abrocitinib are somewhat more effective than dupilumab, while baricitinib (at the doses likely to be approved) and tralokinumab are likely somewhat less effective than dupilumab. When comparing therapies, other outcomes may also be important such as many patients with atopic dermatitis have comorbid atopic conditions and dupilumab has proven benefit in treating some patients with asthma.

Though abrocitinib, baricitinib, tralokinumab, and upadacitinib appeared to have few serious harms reported from the trials of atopic dermatitis, oral JAK inhibitors approved for other indications, including baricitinib and upadacitinib, have label warnings about potentially causing serious infections, blood vessel disorders, cancer and death, and serious harms are more common at the higher doses studied. Whether certain oral JAK inhibitors or their use in patients with atopic dermatitis is associated with fewer long-term harms remains uncertain. No similar risks have been reported with tralokinumab but while it works through a mechanism more similar to dupilumab than the JAK inhibitors it lacks the same long-term safety profile of dupilumab. Moreover, for all of these medications there is uncertainty about their relative benefit and safety caused by differences in the trials with regards to patient characteristics, outcomes assessed and their timing, the indirect nature of the NMAs, and limited long-term efficacy and safety data.

In summary, for adults and adolescents with moderate-to-severe atopic dermatitis inadequately controlled with topical or systemic therapies, or for whom topical or systemic therapies are not tolerated or are medically inadvisable, we identified benefits from short-term trials of these four agents but concerns about long-term safety, especially for the oral JAK inhibitors. As such:

- We consider the evidence for the net health benefit for abrocitinib, baricitinib, tralokinumab and upadacitinib compared with topical therapies alone to be *promising but inconclusive ("P/I")*, demonstrating a moderate certainty of a small or substantial net health benefit, with a small (but nonzero) likelihood of a negative net health benefit.
- We consider the evidence for the net health benefit for abrocitinib and upadacitinib compared with dupilumab to be *insufficient* ("I"), and that the net health benefit of baricitinib and tralokinumab were *comparable or inferior* ("C-") when compared with dupilumab, demonstrating moderate certainty that the point estimate for comparative net health benefit is either comparable or inferior.

 We consider the evidence for the net health benefit for abrocitinib, baricitinib, tralokinumab, and upadacitinib compared with each other to be insufficient ("I").

We also note that for the new therapies, we have greater uncertainties for adolescents given that baricitinib and tralokinumab trials only included adults and the randomized trials of abrocitinib and upadacitinib enrolled small numbers of patients younger than age 18.

Table 3.6. Evidence Ratings

Treatment	Comparator	Evidence Rating
Abrocitinib	Topical therapies alone	P/I
Baricitinib	Topical therapies alone	P/I
Tralokinumab	Topical therapies alone	P/I
Upadacitinib	Topical therapies alone	P/I
Abrocitinib	Dupilumab	1
Baricitinib	Dupilumab	C-
Tralokinumab	Dupilumab	C-
Upadacitinib	Dupilumab	1
Abrocitinib, Baricitinib,	To each other	I
Tralokinumab, Upadacitinib		

3.3. Results for Mild-to-Moderate Population

Clinical Benefits

The key clinical benefits and harms of ruxolitinib cream in the mild-to-moderate population are described in Section 3.3. Additional evidence is presented in <u>Sections D2</u> and <u>D3</u> of the Report Supplement (see <u>Report Supplement Tables D3.12-3.13</u> and <u>Evidence Tables G1.48-1.64</u>.)

Our 2017 Report found inadequate evidence to assess the relative efficacy of crisaborole with the other topical therapies for mild-to-moderate atopic dermatitis including topical calcineurin inhibitors and topical corticosteroids. Trials of crisaborole found modest improvement compared to vehicle (placebo). For example, in pooled analyses of two trials of crisaborole, Investigator's Static Global Assessment (ISGA) response, defined as an ISGA score of 0 or 1 and an improvement of 2 points or more from baseline, was moderately higher in the crisaborole arms, compared with the placebo arms at day 29 (32% vs. 22%). NMA results comparing crisaborole to pimecrolimus, a topical calcineurin inhibitor, showed a trend towards improvement in IGA response with pimecrolimus (risk ratio: 0.61; 95% CrI: 0.10 to 2.28). However, time periods and versions of IGA scales differed between the trials, and the credible interval was wide. Further, an SLR suggested pimecrolimus was less effective than topical tacrolimus or moderate potency topical corticosteroids.¹¹⁴

Ruxolitinib Cream

Ruxolitinib cream substantially increased the likelihood of achieving EASI 75, EASI 90, and IGA response in a dose dependent manner compared to vehicle (placebo). Results for other EASI thresholds and other patient reported outcomes were generally consistent with results for EASI 75 and IGA. Compared with topical corticosteroids, outcomes for ruxolitinib cream were better on reported measures. Results for adolescents were similar to adults and long-term data were limited.

We identified two monotherapy trials (TRuE-AD1 & TRuE-AD2) comparing ruxolitinib cream to vehicle (placebo). Both trials enrolled patients \geq 12 years old; most of the patients were \geq 18 years old (80%-81%). In addition, we identified a placebo- and active-controlled trial that enrolled patients \geq 18 years old.

In TRuE-AD1 and 2, 62% of patients achieved EASI 75 in the ruxolitinib cream 1.5% arms, compared with 14%-25% of patients in the vehicle (placebo) arms at week eight. EASI 75 was achieved by 52%-56% of patients with ruxolitinib cream 0.75%. EASI 90 was achieved by 43%-44% of patients in the ruxolitinib cream 1.5 arms, compared with 4%-10% of patients in the vehicle (placebo) arms. In the ruxolitinib cream 0.75% arms, 35%-38% of patients achieved this outcome. IGA response, defined as an IGA score of 0 or 1 and an improvement of 2 points or more from baseline, was achieved by 51%-54% of patients in the ruxolitinib cream 1.5% arms, compared with 8%-15% of patients in the vehicle (placebo) arms. IGA response was achieved by 39%-50% of patients with ruxolitinib cream 0.75%.

More patients experienced a \geq 4-point improvement on the patient reported PP-NRS with ruxolitinib cream 1.5% and 0.75% dosing than with vehicle (placebo) (51%-52% and 40%-43% vs. 15%-16%, respectively).

Other patient reported outcomes showed similar favorable results compared to vehicle (placebo). In pooled analyses, patients had greater reductions from baseline on the DLQI with ruxolitinib cream 1.5% (-7) and ruxolitinib cream 0.75% (-7) than vehicle (placebo) (-3.1; p<0.0001 for comparisons with both doses of ruxolitinib cream), where a 4-point difference is considered to be clinically meaningful.^{99,104} Patients also had greater reductions from baseline on POEM with ruxolitinib cream 1.5% and 0.75% compared to vehicle (placebo) (-11 and -11 to vs. −4.2, respectively; p<0.0001 for both comparisons), where a 3-4-point improvement is considered clinically meaningful.^{99,105}. More patients experienced a ≥6-point improvement on the Patient Reported Outcomes Measurement Information System (PROMIS) Short Form-Sleep Disturbance Score with ruxolitinib cream 1.5% and 0.75% dosing than vehicle (placebo) (22%-26% and 21% vs. 10%-19%%, respectively; p<0.05 for both comparisons).¹¹⁵ Similarly, patients had greater reductions

from baseline on SCORAD with ruxolitinib cream 1.5% and 0.75% dosing than vehicle (placebo) (-67% and -63% vs. -30.4%; p<0.0001).

In a monotherapy trial that compared ruxolitinib cream to topical triamcinolone acetonide (a medium potency topical corticosteroid) and vehicle (placebo), there were numerical improvements with ruxolitinib cream compared to triamcinolone acetonide cream for EASI 75, IGA response (as defined above), and change from baseline in itch NRS scores.^{86,87} However, no tests of statistical significance were reported (see <u>Table D3.12</u> in the <u>Report Supplement</u>).

Results for HADS Anxiety and Depression were not reported in any trials of ruxolitinib cream.

The 52-week long-term extension studies of TRuE-AD1 and TRuE-AD2, designed to primarily evaluate the long-term safety of ruxolitinib, suggest maintenance of IGA response at 52 weeks (see Report Supplement D3).⁷³

Harms

All TEAEs were of mild-to-moderate severity (see Report Supplement Table D3.13). The most commonly reported TEAEs included application site burning and pruritus, and the incidence of these TEAEs was lower in the ruxolitinib cream arms than vehicle (placebo). In contrast, the incidence of serious TEAEs was generally similar between the arms. Further, discontinuation incidence due to TEAEs was lower in the ruxolitinib cream arms compared to placebo and triamcinolone acetonide cream. More information on the harms of ruxolitinib cream is available in Evidence Tables G1.59-1.60 of the Report Supplement.

Subgroup Analyses and Heterogeneity

We examined outcomes among patient subgroups of interest based on age (children 6 to 11 years old, adolescents 12-17 years old, and adults greater than 18 years old), disease severity (mild and moderate), and race.

Patient Age

No trials of ruxolitinib cream enrolled children. Subgroup analyses of adolescent patients from trials that enrolled patients 12 years and older suggest qualitatively similar results to the overall population, though the proportion of patients 12-17 years old in these trials was small (see Evidence Tables G1.61-1.64).¹⁰¹

Disease Severity

Subgroup analyses based on disease severity at baseline suggest qualitatively better outcomes in patients with moderate disease compared to those with mild disease (see Evidence Tables G1.61-1.64).97

Race

In a presentation of pooled data from two trials, IGA response with ruxolitinib appeared somewhat greater in white than black patients. With the two doses (1.5% and 0.75%), the percentages of white patients who achieved IGA treatment success at week eight were 57.3% and 49.7% versus 12.2% with vehicle (placebo); in black patients, these results were 38.1% and 31.4% versus 11.5%. Results in Asians and other races appeared more similar to the results in white patients.

Uncertainty and Controversies

Although ruxolitinib cream is a topical JAK inhibitor and concern for side effects may be lower, systemic absorption still occurs and its role for the long-term management of patients with mild-moderate atopic dermatitis, especially in children and adolescents, is uncertain and will also require long-term assessment of safety outcomes. Perhaps reflecting concerns about systemic JAK inhibitors and potential systemic absorption of topical JAK inhibitors, the FDA announced in June 2021 that they are extending the review period for ruxolitinib cream by three months. ¹⁵ Trial designs did not allow for quantitative indirect comparisons between topical ruxolitinib and other topical therapies. The only head-to-head trial was in comparison with a medium potency topical corticosteroid which would be expected to have lower efficacy than more potent topical therapies.

The effectiveness of ruxolitinib cream in patients with darker skin complexions may be somewhat less, supporting the need for trials in broader populations.¹⁰¹

Summary and Comment

In two phase III trials of ruxolitinib cream versus topical emollients alone (placebo), patients receiving ruxolitinib cream had improved outcomes at the two doses studied. A single phase II trial of ruxolitinib cream included a topical steroid comparator. While outcomes appeared to favor ruxolitinib cream compared to topical triamcinolone acetonide, no tests of statistical significance were reported, and it was not compared with more potent topical corticosteroids. Side effects of ruxolitinib cream were similar to or better than vehicle (placebo), though long-term safety remains uncertain. In summary:

- We consider the evidence for the net health benefit for ruxolitinib cream compared with topical emollients to be *comparable or better ("C++")*, demonstrating a moderate certainty of a comparable, small, or substantial net health benefit, with high certainty of at least a comparable net health benefit.
- We consider the evidence for the net health benefit for ruxolitinib cream compared with other topical medications to be *insufficient* ("I").

New England CEPAC Votes

Table 3.7. New England CEPAC Votes on Comparative Clinical Effectiveness Questions

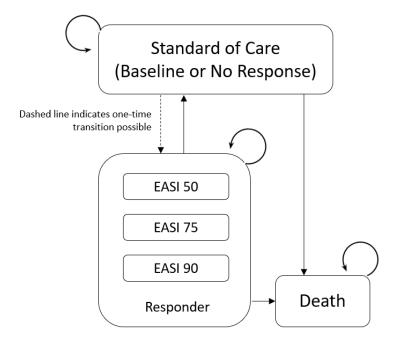
Is the evidence adequate to demonstrate that the net health benefit of abrocitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Question	Yes	No
have not been tolerated, or are medically inadvisable. Usual care in such patients is defined as use of topical emollients and avoidance of exacerbating factors. Given the currently available evidence: Is the evidence adequate to demonstrate that the net health benefit of abrocitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Patient Population for questions 1-4: Adults with moderate-to-severe atopic dermatic	tis who	se
use of topical emollients and avoidance of exacerbating factors. Given the currently available evidence: Is the evidence adequate to demonstrate that the net health benefit of abrocitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of the upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of the upadacitinib added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	disease has either not responded adequately to topical therapies, or for whom topical	therap	ies
Is the evidence adequate to demonstrate that the net health benefit of abrocitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	have not been tolerated, or are medically inadvisable. Usual care in such patients is d	efined (as
Is the evidence adequate to demonstrate that the net health benefit of abrocitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	use of topical emollients and avoidance of exacerbating factors. Given the currently a	vailabl	e
added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	evidence:		
Is the evidence adequate to demonstrate that the net health benefit of baricitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Is the evidence adequate to demonstrate that the net health benefit of abrocitinib	8	5
added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	added to usual care is superior to that provided by usual care alone?		
Is the evidence adequate to demonstrate that the net health benefit of upadacitinib added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Is the evidence adequate to demonstrate that the net health benefit of baricitinib	7	6
added to usual care is superior to that provided by usual care alone? Is the evidence adequate to demonstrate that the net health benefit of 11 2 tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	added to usual care is superior to that provided by usual care alone?		
Is the evidence adequate to demonstrate that the net health benefit of tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Is the evidence adequate to demonstrate that the net health benefit of upadacitinib	9	4
tralokinumab added to usual care is superior to that provided by usual care alone? Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	added to usual care is superior to that provided by usual care alone?		
Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate atopic dermatitis.	Is the evidence adequate to demonstrate that the net health benefit of	11	2
dermatitis.	tralokinumab added to usual care is superior to that provided by usual care alone?		
	Patient Population for Questions 5: Adolescents and Adults with mild-to-moderate at	opic	
Given the currently available evidence, is the evidence adequate to demonstrate 12 1	dermatitis.		
,	Given the currently available evidence, Is the evidence adequate to demonstrate	12	1
that the net health benefit of ruxolitinib cream is superior to that provided by	that the net health benefit of ruxolitinib cream is superior to that provided by		
topical emollients alone?	topical emollients alone?		

Based on the evidence in the clinical trials and ongoing concerns about long-term safety with oral JAK inhibitors, the panel votes were split as to the net health benefit of abrocitinib, baricitinib, and upadacitinib in adults with moderate to severe atopic dermatitis. The panel voted that tralokinumab had adequate evidence of net health benefit in this setting.

For adolescent and adult patients with mild-to-moderate atopic dermatitis, the panel voted that ruxolitinib cream has adequate evidence of net health benefit compared with topical emollients alone. The panel focused on the clinical effectiveness and the safety profile of ruxolitinib cream.

4. Long-Term Cost Effectiveness

4.1. Methods Overview


We adapted the Markov model from ICER's 2017 report on dupilumab for this evaluation, with the adaptation informed by key clinical trials and prior relevant economic models. ¹¹⁶ Costs and outcomes were discounted at 3% per year.

The model focused on an intention-to-treat analysis, with a hypothetical cohort of adult patients with moderate-to-severe atopic dermatitis being treated with abrocitinib, baricitinib, tralokinumab and upadacitinib compared to dupilumab, or emollients (representing standard of care). Model cycle length was 16 weeks based on common response evaluation time points, prior published economic models, and clinical data.

We developed a Markov model with health states based on treatment response. Treatment response was measured by the Eczema Area and Severity Index (EASI) score.¹¹⁷ Health states were categorized by the percent decrease in EASI score from baseline after a patient begins an intervention: 50%-74% decrease (EASI 50), 75%-89% decrease (EASI 75), 90%-99% decrease (EASI 90), or less than 50% decrease (no response).

Patients enter the model in the non-responder state and then may remain in non-response or transition to a responder state (EASI 50-74, 75-89, or 90-100) in the first cycle. Once in a response state, patients were not allowed to transition between responder categories. Patients could transition back to the non-responder state as they discontinued treatment, for any reason. Patients could also transition from any health state to death. Patients remained in the model until the end of the time horizon of five years or death. We assumed that atopic dermatitis disease and treatment did not affect mortality.

Figure 4.1. Model Structure

EASI: Eczema Area Severity Index;

Schematic note: Standard of care indicates topical emollients only (not topical corticosteroids). Patients in the standard of care state, either at baseline or after discontinuing therapy, are assumed to have an EASI score of less than 50.

4.2. Key Model Choices and Assumptions

Below is a list of key model choices:

- Each therapy was included at one dosage, which is either the most commonly used dosage
 or the most effective dosage (if two doses have equal effects, we modeled the lower dose).
- We modeled one line of active therapy to focus the cost-effectiveness analyses on the available clinical data for the interventions of interest.
- The model used 16-week cycles and included a half-cycle correction for all cycles.
- Base case costs included direct medical costs by health state, drug costs, and any costs associated with administration or monitoring.
- Mortality in each health state was based on age- and gender-specific US mortality rates (allcause).

- Due to no assumed differences in mortality across treatments and no assumed time variation on a treatment's benefits after the measurement of treatment response, we used a 5-year time horizon for the base case model and tested the horizon duration in a scenario analysis.
- All health states were weighted by a single set of health state utility values from pooled manufacturer data to derive quality-adjusted life-years (QALYs).
- Costs and outcomes were discounted annually at 3%.
- Change in peak pruritus numerical rating scale (PP-NRS), impact on sleep items within the
 disease-specific patient-reported outcomes (POEM, SCORAD, and ADerm-IS), and impact on
 anxiety/depression (HADS) were assessed in the clinical review and were considered as part
 of a cost consequences analysis alongside the cost-utility findings from the model.

Our model includes several assumptions stated below.

Table 4.1. Key Model Assumptions

Assumption	Rationale
Transitions to the response state occur after	Patients are typically evaluated for treatment
one cycle.	response after approximately 16 weeks.
Patients do not change response levels after the	There are limited data on sustained changes between
initial response while on treatment	response levels.
After transitioning off treatment, quality of life and	There is limited evidence that treatment for atopic
costs are equivalent to a patient who was eligible for	dermatitis alters the course of the condition after
treatment but never treated	treatment has ceased
Patients on only topical treatment who are	Patients in the placebo arms of the considered clinical
responders (achieve ≥EASI50 after the first cycle)	trials were allowed to utilize emollients, and thus
transition to non-response at a rate equivalent to	the recurrence rate in the placebo arms is expected to
discontinuation rates for placebo patients in the	mirror that of patients treated with topicals. We did
relevant clinical trials	not consider discontinuation rates of trials where
	patients were allowed to use topical corticosteroids.
Among responders, discontinuation rates do not vary	There is limited evidence supporting differential
by responder level	discontinuation by response level or over time.
Atopic dermatitis disease and treatments do not	There is limited evidence suggesting an effect on
affect mortality	mortality. We assume the modeled patient
	population excludes patients for whom JAK inhibitors
	could affect mortality (those over 50 years of age with
	a cardiovascular risk factor).

Treatment Population

The modeled base case analysis utilized a hypothetical cohort of patients with moderate-to-severe atopic dermatitis in the U.S. being treated with abrocitinib, baricitinib, tralokinumab, or upadacitinib, compared to dupilumab or emollients (representing standard of care). We pooled trial data from these treatments to derive demographic details for the cohort, which included a mean age of 35.8 years and 44% of the cohort being female. The patient population is assumed to exclude patients over 50 with increased cardiovascular risk, as JAK inhibitors will likely not be approved in that population.

Model Inputs

Transition Probabilities

We utilized the results of the NMA of placebo-controlled monotherapy trials to inform the treatment-specific transitions to each responder health state in the first model cycle. The overall percentage of responders was as follows: 73% for abrocitinib, 44% for baricitinib, 46% for tralokinumab, 80% for upadacitinib, 64% for dupilumab, and 21% for standard of care.

Table 4.2. Initial Response Health State Transition Probabilities

Drug	EASI 50-74	EASI 75-99	EASI 90+	Total Responders
Abrocitinib				
Baricitinib				
Tralokinumab				
Upadacitinib				
Dupilumab				
Standard of Care	9.6%	6.5%	5.3%	21.4%

EASI: Eczema Area Severity Index

We utilized treatment specific per-cycle treatment discontinuation rates for the first year after initial treatment and then for all subsequent years over the model time horizon where data was available. Per cycle discontinuation rates were derived from long-term follow-up data for patients who achieved a minimum of EASI 50 at their initial 16-week evaluation. Treatment discontinuation for any reason resulted in transitioning to the non-responder health state. Long-term discontinuation data for atopic dermatitis patients were not available for upadacitinib; in the absence of data provided on the discontinuation rate for responders after 16 weeks, we assumed a rate equal to the highest rate within the class.

Table 4.3. Discontinuation Rates

Drug	Year 1	Year 2+	Source
Abrocitinib			JADE COMPARE
Baricitinib			BREEZE-AD3
Tralokinumab	5.04%	5.04%	ECZTRA 2
Upadacitinib			BREEZE-AD3 (proxy)
Dupilumab	3.77%	4.87%	LIBERTY AD-SOLO CONTINUE; LIBERTY AD OLE
Standard of Care	25.40%	25.40%	ECZTRA 1 & 2

EASI: Eczema Area Severity Index

Health State Utilities

We derived pooled health state utilities for each health state (Baseline, <EASI 50, EASI 50-74, EASI 75-89, and EASI 90-100) from manufacturer submitted data. We estimated utility values for each health state by combining estimates from the treatments with disaggregated data by health state and weighting by the number of study participants. Utility data were not disaggregated by moderate and severe subpopulations. We considered therapy-specific health state utility values to capture benefit beyond EASI score, however the available evidence did not support differential utility scores by treatment. To capture the benefits during patients' first 16 weeks on therapy, the utilities in the first cycle were calculated as a weighted average with half the time assumed to be spent at baseline utility and the other half assumed to be in a responder state for those who transitioned in the subsequent cycle. Utility for the health state of EASI 0-49 was applied to only the first model cycle to represent patients who took the therapy during the initial 16-week trial period and may have derived some benefit from the therapy despite not reaching the responder status of EASI 50. It is assumed that after discontinuing therapy, patients return to the non-responder state utility.

Table 4.4. Health State Utilities

Health State	Value	Source
Non-responder		ECZTRA 1 & 2, MEASURE UP 1 & 2,
EASI 0-49		AD UP, SOLO 1 & 2
EASI 50-74		
EASI 75-89		
EASI 90-100		

EASI: Eczema Area Severity Index

Patient Reported Outcomes

Inputs in the cost-consequence analysis were derived from manufacturer submitted data, including one measure of itch (PP-NRS), three measures for sleep (POEM, SCORAD, and ADerm-IS), and one measure of anxiety/depression (HADS). These analyses were included if data were provided for the mean score at baseline and for each responder category. Data were available for tralokinumab (PP-NRS, POEM, SCORAD, HADS) and upadacitinib (PP-NRS, Aderm-IS). The model output was the mean score and incremental mean score versus SoC over the model time horizon. Measures of change in other patient reported outcomes were considered but ultimately not included in the cost-consequence modeling due to lack of data by health state.

Table 4.5. Patient Reported Outcomes

	PP-NRS	PP-NRS	POEM (Sleep)	SCORAD (Sleep)	ADerm-IS (sleep)	HADS (anxiety/ depression)
Drug	Tralokinumab	Upadacitinib	Tralokinumab	Tralokinumab	Upadacitinib	Tralokinumab
Pooled						
Baseline*						
EASI 50						
EASI 75						
EASI 90						
Source for	ECZTRA 1, 2,	ECZTRA 1, 2,	ECZTRA 1, 2	ECZTRA 1, 2	Measure Up1,	LP0162-
pooled	MEASURE UP 1,	MEASURE UP			2, and AD Up	1326/1339/1325
baseline	2, AD UP,	1, 2, AD UP,				
	BREEZE AD5,	BREEZE AD5,				
	MONO1-2,	MONO1-2,				
	COMPARE	COMPARE				
Source for	ECZTRA 1, 2,	MEASURE UP	ECZTRA 1, 2	ECZTRA 1, 2	Measure Up1,	LP0162-
drug-specific		1, 2, and AD			2, and AD Up	1326/1339/1325
scores		UP				

^{*}Pooled baseline estimates include all trials with a baseline estimate for each measure. Health state-specific measures are presented where data was available; drugs without health state specific PRO measures are not presented in this table.

ADerm-IS: Atopic Dermatitis Impact Scale, EASI: Eczema Area Severity Index, PP-NRS: Peak Pruritis Numeric Rating Scale, POEM, Patient-Oriented Eczema Measure, SCORAD: Scoring Atopic Dermatitis; HADS, hospital anxiety and depression scale;

Mortality

Gender- and age-specific background mortality from the Centers for Disease Control and Prevention U.S.-specific tables was used for all-cause mortality rates, and was uniformly applied across all health states. 118

Cost Inputs

Drug Costs

For included therapies that are currently marketed, we obtained net pricing estimates from SSR Health, LLC, which combine data on unit sales with publicly disclosed US sales figures that are net of discounts, rebates, patient assistance programs, and concessions to wholesalers and distributors, to derive a net price. We estimated net prices by comparing the four-quarter averages (i.e., 3rd quarter of year 2019 through 2nd quarter of 2020) of both net prices and wholesale acquisition cost (WAC) per unit to arrive at a mean discount from WAC for the drug. Finally, we applied this average discount to the most recent available WAC (Redbook accessed March 9, 2021) to arrive at an estimated net price per unit.

For abrocitinib, we used the average of the net prices of baricitinib and upadacitinib as a placeholder price. For tralokinumab, we used the net price of dupilumab as a placeholder price and assume that it is used every two weeks in the base case. No known corroborated analyst pricing is available for either abrocitinib or tralokinumab. Placeholder prices will be updated in future versions of the report as pricing information becomes available.

Table 4.6. Drug Costs

Drug	WAC per	WAC per Discount from		Net Price per Year
	Dose	WAC*	Dose	
Abrocitinib (200 mg qd) [†]	\$127.65	17%	\$113.34	\$41,397.44
Baricitinib (Olumiant™, 2 mg qd)	\$79.28	33%	\$53.12	\$19,402.08
Tralokinumab (300 mg q2w)†	\$1,601.70	26%	\$1,193.27	\$31,131.56
Upadacitinib (Rinvoq™, 30 mg qd)	\$176.02	1%	\$173.56	\$63,392.79
Dupilumab (Dupixent®, 300 mg	\$1,601.70	26%	\$1,193.27	\$31,131.56
2qw)				

^{*}SSR Health, LLC, was used for estimating discounts from wholesale acquisition cost

Non-Drug Costs

Direct Medical Costs

We used annual direct medical cost estimates from manufacturer provided data derived from IBM Watson MarketScan claims database. Claims were analyzed from years 2011-2018, and costs were updated from 2018 to 2021 US dollars using the US Bureau of Labor Statistics CPI inflation calculator, which include all non-drug direct health care costs. Subcutaneous injectables were assumed to also incur a one-time cost for self-injection training and monitoring. We did not find evidence of any serious adverse events occurring in >5% of subjects among any of the clinical trials, therefore we did not include adverse event costs in the model.

Table 4.7. Direct Medical Health State Costs

	Value	Source
	Annual Health State Costs	
Non-responder	\$18,588.62	Data provided by manufacturer
EASI 50-74	\$10,100.58	
EASI 75-89	\$8,910.17	
EASI 90+	\$8,595.68	
On	e-time SC Training and Monitoring Co	sts
Office visit/self-injection training	\$23.00	CPT 99211
General practitioner visit	\$57.00	CPT 99212
Blood panel	\$7.77	CPT 85025

CPT: current procedural terminology codes, SC: subcutaneous

All costs in 2021 USD

[†]Using placeholder prices

4.3. Results

Base Case Results

The total discounted costs, quality-adjusted life years (QALYs), life years (LYs), and equal value of life years gained (evLYG) over the five-year time horizon are presented in Table 4.9. We note that there are not currently available prices for abrocitinib and tralokinumab, and thus the cost estimates and incremental cost-effectiveness ratios are based on placeholder prices. In a cohort of patients with moderate-to-severe atopic dermatitis who received a single treatment beyond emollients for up to 5 years, baricitinib had the lowest drug cost and total cost, \$26,900 and \$105,300, respectively, compared to upadacitinib at \$151,300 and \$219,700 as the highest drug and total costs, respectively. Abrocitinib generated the highest QALYs, 3.59, followed by upadacitinib and dupilumab, with 3.51 and 3.47, respectively. Abrocitinib's higher QALYs was due to having the second highest percent of overall responders and a lower discontinuation rate versus comparators.

Table 4.9. Discounted Results for the Base Case for each Treatment and Standard of Care

Treatment	Drug Cost	Total Cost	QALYs (same as evLYGs)	Life Years	PP- NRS†	POEM (sleep)†	SCORAD (sleep)†	ADerm- IS (sleep)†	HADS (depression and anxiety)†
Abrocitinib*	\$113,200	\$178,400	3.59	4.85	NA	NA	NA	NA	NA
Baricitinib	\$26,900	\$105,300	3.23	4.85	NA	NA	NA	NA	NA
Tralokinumab*	\$51,700	\$127,700	3.29	4.85	-1.11	-0.52	-1.23	NA	-1.23
Upadacitinib	\$151,300	\$219,700	3.51	4.85	-1.65	NA	NA	-5.75	NA
Dupilumab	\$72,400	\$141,900	3.47	4.85	NA	NA	NA		NA
Standard of Care (Topicals)	\$-	\$87,800	2.98	4.85	-0.15	-0.08	-0.19	-0.55	-0.19

ADerm-IS: Atopic Dermatitis Impact Scale, NA: not available, PP-NRS: Peak Pruritis Numeric Rating Scale, POEM: Patient-Oriented Eczema Measure, QALY: quality-adjusted life-year, evLYG: equal-value life-year gained, SCORAD: Scoring Atopic Dermatitis; HADS: hospital anxiety and depression scale;

Results of the cost-consequence analysis, which reflect the average change in each patient reported outcome (PRO) score from a pooled baseline over the 5-year time horizon, are also reported in Table 4.9. Incremental results can be found in Supplement table E2.1.

^{*}Using a placeholder price

[†]Average change in PRO score from pooled baseline over model time horizon

Table 4.10 presents the incremental results from the base case analysis, which include incremental cost-effectiveness ratios for incremental cost per LY gained, incremental cost per QALY gained, and incremental cost per evLYG gained. Given no modeled gains in life years across the evaluated therapies, the cost per life year gained is not reported.

Table 4.10. Incremental Cost-Effectiveness Ratios for the Base Case

Treatment	Comparator	Cost per QALY	Cost per Life	Cost per evLYG
		Gained	Year Gained	
Abrocitinib*	SoC	\$148,300	NA	\$148,300
Baricitinib	SoC	\$71,600	NA	\$71,600
Tralokinumab*	SoC	\$129,400	NA	\$129,400
Upadacitinib	SoC	\$248,400	NA	\$248,400
Dupilumab	SoC	\$110,300	NA	\$110,300
Abrocitinib*	Dupilumab	\$303,400	NA	\$303,400
Baricitinib	Dupilumab	Less Costly, Less Effective	NA	Less Costly, Less Effective
Tralokinumab*	Dupilumab	Less Costly, Less Effective	NA	Less Costly, Less Effective
Upadacitinib	Dupilumab	\$1,912,200	NA	\$1,912,200

evLYG: equal-value life-year gained, QALY: quality-adjusted life-year, SOC: Standard of Care

Note: The cost per QALY and cost per evLYG ratios were the same given that the treatments have not been shown to lengthen life.

^{*}Using a placeholder price

Sensitivity Analyses

We conducted one-way sensitivity analyses to identify the impact of parameter uncertainty and key drivers of model outcomes. Across all modeled comparisons, the health state utility values were identified as the most influential model parameters on the incremental cost-effectiveness ratios, followed by the drug cost, initial transition probabilities, non-responder direct costs, and discontinuation rates. The Report Supplement contains tornado diagrams for each of the modeled comparisons.

Probabilistic sensitivity analyses were also be performed by jointly varying all model parameters over 1,000 simulations, then calculating 95% credible range estimates for each model outcome based on the results, contained in the Report Supplement. From the PSA simulations, we estimated the probability of a drug being cost-effective across a range of incremental cost-effectiveness ratios (\$50,000, \$100,000, \$150,000, and \$200,000 per QALY), presented in Table 4.11 versus standard of care. PSA results indicated that included therapies had 0% estimated probability of being cost-effective versus dupilumab at an ICER threshold of \$200,000 or less. We also performed threshold analyses for drug costs across a range of incremental cost-effectiveness ratios (\$50,000, \$100,000, \$150,000, and \$200,000 per QALY), available in the Report Supplement.

Table 4.11. Probabilistic Sensitivity Analysis Cost per QALY Gained Results: Each treatment versus SoC

Cost-Effectiveness Threshold	Abrocitinib*	Baricitinib	Tralokinumab*	Upadacitinib	Dupilumab
\$50,000	0%	45%	12%	0%	0%
\$100,000	3%	74%	43%	0%	38%
\$150,000	49%	85%	65%	3%	76%
\$200,000	82%	90%	75%	25%	92%

^{*}Based on placeholder prices

Scenario Analyses

We conducted five scenario analyses for the report. First, we calculated a modified societal perspective by adding productivity loss associated with moderate-to-severe atopic dermatitis by health state. Second, we extended the time horizon to lifetime, but maintained the single line of treatment. Third, we adjusted the model for abrocitinib to be initially evaluated at 12-weeks rather than 16 weeks to reflect the JADE MONO-1 and -2 clinical trials. Fourth, we adjusted the model to reflect outcomes for combination therapy with topical corticosteroids. Finally, we adjusted the model for tralokinumab patients achieving EASI 75 or above after 16 initial weeks of therapy to reduce dosing frequency from every 2 weeks to every 4 weeks to reflect arms of the ECZTRA3 clinical trial.

The total discounted costs, quality-adjusted life years (QALYs), life years (LYs), and equal value of life years gained (evLYG) over the five-year time horizon under the modified societal perspective are presented in <u>Table E4.2</u> in the Report Supplement. The drug costs and patient outcomes remained the same compared to the base case, and the table shows the base case total costs for comparison. The total cost from the modified societal perspective versus the base case increased by 10-26% for the interventions and 36% for standard of care.

<u>Table E4.3</u> in the Report Supplement presents the incremental results from the modified societal perspective scenario analysis, which include incremental cost-effectiveness ratios for incremental cost per LY gained, incremental cost per QALY gained, and incremental cost per evLYG. Incremental cost-effectiveness ratios from the modified societal perspective versus the base case when applying the standard of care comparator decreased by 7% to 22% across the therapies evaluated, but did not lead to therapies crossing cost-effectiveness thresholds (i.e., \$50, \$100, or \$150,000 per QALY), with the exception of dupilumab which became cost-effective at the \$100,000 per QALY threshold.

Table E4.5 in the Report Supplement presents the incremental results from the lifetime time horizon scenario analysis, which include incremental cost-effectiveness ratios for incremental cost per LY gained, incremental cost per QALY gained, and incremental cost per evLYG gained. Incremental cost-effectiveness ratios from the lifetime time horizon versus the base case five-year horizon when applying the standard of care comparator decreased by 4% to 13% across the therapies evaluated, but did not lead to therapies crossing cost-effectiveness thresholds (i.e., \$50, \$100, or \$150,000 per QALY).

Table E4.6 in the Report Supplement presents the effect of changing the initial model cycle for abrocitinib from 16-weeks to 12-weeks to better reflect the JADE MONO-1 and -2 clinical trials. This scenario had minimal effect on QALYs, life-years, or equal-value life-years. In a five-year time horizon, this switch would decrease drug cost and total costs by 1.4% and 0.9%, respectively, and decrease ICER versus SoC by 1%; ICER versus dupilumab would increase by 0.2%. These outcomes are based on a placeholder price for abrocitinib and will be updated.

Table E4.8 in the Report Supplement presents the total results for the combination therapy scenario analysis, which include drug costs, total costs, QALYs, life-years, and evLYG. Drug costs and total costs were higher in the combination therapy scenario for all therapies, with increases ranging from 6-36%. Total costs decreased by 2% for those on standard of care. QALYs increased 2-4% across all therapies and SoC in the combination therapy scenario. Incremental cost-effectiveness results (Table E4.9) were all nominally larger (9-14%) in the combination therapy scenario when compared to standard of care/placebo but remained in the same order of cost effectiveness. Abrocitinib was the only therapy to cross a cost-effectiveness threshold (exceeded \$150,000 for combination therapy, assuming a placeholder price). When compared to dupilumab, both baricitinib and

tralokinumab remained less costly and less effective, however dupilumab switched to dominate upadacitinib (dupilumab being less costly and more effective than upadacitinib) in the combination therapy scenario.

Table E4.10 in the Report Supplement presents the results of scenario that allowed 50% of patients who achieved EASI 75 or above on tralokinumab to switch from Q2 to Q4 week dosing, which reflects data from the . This scenario had no effect on QALYs, life-years, or equal-value life-years. In a five-year time-horizon assuming concurrent TCS therapy in both arms, drug and total costs would decrease by 15% and 8%, respectively. The ICER would decrease by 20% compared to SoC, however tralokinumab would remain less costly and less effective when compared to dupilumab. Because the clinical trial informing the analysis allowed patients to use concurrent TCS therapy, these results are most comparable to the scenario analysis of combination therapy.

Threshold Analyses

Annual prices necessary to reach cost-effectiveness thresholds of \$50,000, \$100,000, and \$150,000 per QALY compared to standard of care are listed in Table 4.12.

Table 4.12. QALY-Based Threshold Analysis Results

	Annual WAC	Annual Net Price	Annual Price to Achieve \$50,000 per QALY	Annual Price to Achieve \$100,000 per QALY	Annual Price to Achieve \$150,000 per QALY
Abrocitinib	\$46,600*	\$41,400*	\$19,400	\$30,600	\$41,800
Baricitinib	\$29,000	\$19,400	\$15,600	\$24,400	\$33,300
Tralokinumab	\$41,800*	\$31,100*	\$16,400	\$25,700	\$35,000
Upadacitinib	\$64,300	\$63,400	\$19,300	\$30,400	\$41,500
Dupilumab	\$41,800	\$31,100	\$18,400	\$29,000	\$39,500

QALY: quality-adjusted life-year, WAC: wholesale acquisition price

Model Validation

We used several approaches to validate the model. We provided preliminary model structure, methods and assumptions to manufacturers, patient groups, and clinical experts. Based on feedback from these groups, we refined data inputs used in the model, as needed. We varied model input parameters to evaluate face validity of changes in results. We performed model verification for model calculations using internal reviewers. Specifically, we tested all mathematical functions in the model to ensure they were consistent with the report (and Report Supplement materials) and used extreme and null input values to ensure the model was producing findings

^{*}Based on a Placeholder Price

consistent with expectations. Finally, model validation was also conducted in terms of comparisons to other model findings. We searched the literature to identify models that were similar to our analysis, with comparable populations, settings, perspective, and treatments.

Uncertainty and Controversies

As with any modeling exercise, there are limitations to be considered when evaluating these findings. First, we extrapolated clinical trial efficacy beyond the length of time that the trials were conducted, which assumes continued effectiveness (along with adherence to treatment). Next, we assumed that levels of EASI response are associated with differences in health-related quality of life. However, there may be differential effects of the treatments modeled on conditions such as itch and sleep that are not completely captured by generic quality of life instruments. However, available data did not support the use of treatment specific utilities. Additionally, there may be incremental effects of some of these treatments on quality of life in sub-populations of people with atopic dermatitis, such as those with co-occurring asthma or chronic rhinosinusitis, which are not explicitly captured in the current model.

We only had discontinuation data beyond one year for dupilumab, and assumed that the discontinuation rates for the other treatments were the same as year 1 in years 2-5. However, we note that we selected a 5-year time horizon for the base case in part to reduce the impact of these assumptions. Further, atopic dermatitis specific discontinuation rates were not available for upadacitinib and we therefore assumed that the discontinuation rate was equal to the highest rate within the class. We also assumed that patient response to treatment was fixed after 16 weeks, allowing neither further improvement nor waning of efficacy, other than capturing discontinuation. This assumption was based on the lack of data demonstrating changes in either direction.

We excluded SAEs that occurred in less than 5% of the trial population. However, we note there are some rare SAEs from the phase III JAK inhibitor clinical trials that may impact both costs and patient health-related quality of life.

Finally, the NMA analyses that informed our effectiveness estimates in the model were derived from phase II and III RCTs that compared the treatments of interest to placebo with only the added use of topical emollients at 16 weeks. We provided results for the use of these products in combination with topical steroids as a scenario analysis. Furthermore, the NMA's produced estimates with wide confidence intervals and there may be additional uncertainty regarding the comparative effectiveness of these treatments.

4.4 Summary and Comment

Using a Markov model, we compared the cost and effectiveness of four emerging therapies for moderate to severe atopic dermatitis to skin emollients and an approved biologic, dupilumab, over a five-year time horizon taking a health system perspective. It is important to note that the JAK inhibitor class has been associated with some rare but serious clinical adverse events which are not captured in the current model but would carry the potential to impact both costs and outcomes in those patients who experience them.

While drug prices are not currently available for two therapies (abrocitinib and tralokinumab), we found abrocitinib to produce the most QALYs (3.59) of therapies considered and baricitinib to produce the fewest (3.23). Compared to SoC with emollients only, baricitinib was cost-effective at a \$100,000/QALY threshold, abrocitinib and tralokinumab were cost-effective at a \$150,000/QALY threshold (using placeholder prices), dupilumab was cost-effective at a \$150,000/QALY threshold, and upadacitinib would need to decrease its WAC per dose cost from \$176 to \$113 in order to be cost-effective at \$150,000/QALY threshold. Compared to dupilumab, baricitinib and tralokinumab were found to be less costly and less effective whereas abrocitinib (using a placeholder price) and upadacitinib did not meet commonly cited cost-effectiveness thresholds.

5. Contextual Considerations and PotentialOther Benefits

Our reviews seek to provide information on potential other benefits offered by the intervention to the individual patient, caregivers, the delivery system, other patients, or the public that was not available in the evidence base nor could be adequately estimated within the cost-effectiveness model. These elements are listed in the table below, with related information gathered from patients and other stakeholders. Following the public deliberation on this report the appraisal committee will vote on the degree to which each of these factors should affect overall judgments of long-term value for money of the intervention(s) in this review.

Table 6.1. Contextual Considerations

Contextual Consideration	Relevant Information			
Acuity of need for treatment of individual	Patients, caregivers, advocacy groups and clinical experts all			
patients based on the severity of the	identified a need for new therapeutic options for patients with			
condition being treated	atopic dermatitis, especially those with more severe disease who			
	are either unresponsive or intolerant of existing therapies.			
Magnitude of the lifetime impact on	Atopic dermatitis is a chronic condition that usually begins in			
individual patients of the condition being	childhood and can continue throughout the course of a patient's life			
treated	broadly affecting physical, psychosocial, and emotional health. As			
	such it can affect childhood development, school achievement and			
	performance in the workplace.			
There is uncertainty about the long-term	Though trials of abrocitinib, baricitinib and upadacitinib in atopic			
risk of serious side effects	dermatitis showed few serious side effects, oral JAK inhibitors when			
	used for other conditions include black box warnings for serious			
	infections, malignancies, and clotting disorders.			

Table 6.2. Potential Other Benefits or Disadvantages

Potential Other Benefit or Disadvantage	Relevant Information			
Patients' ability to achieve major life goals	New therapies for atopic dermatitis that improve the appearance,			
related to education, work, or family life	symptoms and complications of atopic dermatitis may help improve			
	quality of life across a range of different outcomes including social			
	interactions with family, friends and other relations, educational			
	achievement, and work performance. However, it is uncertain			
	whether abrocitinib, baricitinib, tralokinumab and upadacitinib will			
	improve education or work outcomes.			
Caregivers' quality of life and/or ability to	For children and adolescents with atopic dermatitis, the care			
achieve major life goals related to	required often involves family members and other caregivers. The			
education, work, or family life	impact of atopic dermatitis and the demands of treatment fall not			
	only on the patient, but also their caregivers. As such, new			
	therapies for atopic dermatitis offer the possibility of improving the			
	quality of life for the caregivers as well as for patients.			
Patients' ability to manage and sustain	The potential of new oral therapies such as abrocitinib, baricitinib			
treatment given the complexity of regimen	and upadacitinib to improve outcomes for patients with atopic			
	dermatitis may also decrease the complexity of care. The need for			
	topical therapies that are time-consuming to apply, phototherapies			
	that require multiple treatment visits or medications that are			
	delivered by injection all increase the complexity of care. Though			
	oral JAK inhibitors are likely to be given along with topical therapies			
	they are likely to reduce the complexity of a patient's regimen if			
	effective.			
	For those responding to an initial every two week schedule,			
	tralokinumab dosing decreased to every four weeks in some			
	patients could potentially affect real world adherence.			
Health inequities	The high costs of treatments for atopic dermatitis, especially newer			
	agents, may exacerbate existing health inequities.			
These interventions offer novel	Abrocitinib, baricitinib, tralokinumab and upadacitinib represent			
mechanisms of action or approach that will	new therapies that reflect translational research in which improved			
allow successful treatment of many	understanding of the mechanisms of disease have led to new			
patients for whom other available	therapies.			
treatments have failed.				

New England CEPAC Votes

At the public meeting, the New England CEPAC deliberated and voted on the relevance of specific potential other benefits and contextual considerations on judgments of value for the interventions under review. The results of the voting are shown below. Further details on the intent of these votes to help provide a comprehensive view on long-term value for money are provided in the ICER Value Assessment Framework.

When making judgments of overall long-term value for money, what is the relative priority that should be given to <u>any</u> effective treatment for atopic dermatitis, on the basis of the following contextual considerations:

Contextual Consideration	Very Low Priority	Low priority	Average priority	High priority	Very high priority
Acuity of need for treatment of individual patients based on the severity of the condition being treated	0	0	6	6	1
Magnitude of the lifetime impact on individual patients of the condition being treated	0	0	3	9	1

For the acuity of need for treatment, the panel voted that any effective treatment should be given average or high priority due to the severity of the disease. The magnitude of lifetime impact on individual patients received a majority vote of "high priority;" the panel emphasized the chronic nature of atopic dermatitis which can start early in a person's life, often in adolescence.

For questions 8-12, considering the average effects of the new systemic therapies as a group, what are the relative effects of the new therapies versus usual care (use of topical emollients and avoidance of exacerbating factors) on the following outcomes that inform judgment of the overall long-term value for money.

Potential Other Benefit or Disadvantage	Major Negative Effect	Minor Negative Effect	No Difference	Minor Positive Effect	Major Positive Effect
Patients' ability to achieve major life goals related to education, work, or family life	0	0	0	4	9
Caregivers' quality of life and/or ability to achieve major life goals related to education, work, or family life	0	0	0	6	7
Society's goal of reducing health inequities	0	1	7	4	1
What are the relative effects of the JAK inhibitors as a class versus dupilumab on patients' ability to manage and sustain treatment given the complexities of the regimens?	0	0	4	8	1
What are the relative effects of tralokinumab versus dupilumab on patients' ability to manage and sustain treatment given the complexities of the regimens?	0	0	8	5	0

The panel voted that the new systemic therapies would have a minor or major positive effect on both the patients' and their caregivers' quality of life. At the same time, the panel concluded that it is difficult to assess these therapies' impact on society's goal of reducing health inequities – high prices and any access limitations might negatively impact certain populations more severely than others. When talking about adherence and patients' ability to sustain a treatment given the complexities of the regimens, the panel voted that the oral JAK inhibitors may have a minor positive effect as oral therapies. When comparing tralokinumab and dupilumab, which are both given by subcutaneous injection, the panel voted that there would be no difference, or a minor positive difference, on the patients' ability to manage the treatments.

6. Health Benefit Price Benchmarks

Health Benefit Price Benchmarks (HBPBs) for the annual cost of treatment with the interventions when compared to standard of care alone are presented in Table 6.1 below. The HBPB for a drug is defined as the price range that would achieve incremental cost-effectiveness ratios between \$100,000 and \$150,000 per QALY or per evLYG gained. Because of the assumption that atopic dermatitis and assessed therapies do not have an impact on mortality, calculated QALYS Gained and evLYGs are equal in this model. Using the broadest set of figures derived from these thresholds, we arrive at a HBPB for abrocitinib from \$30,600 to \$41,800; for baricitinib \$24,400 (no discount needed at the \$150,000 threshold); for tralokinumab, \$25,700 to \$35,000; for upadacitinib, \$30,400 to \$41,500; and for dupilumab, \$29,000 to \$39,500. Discounts from WAC to reach threshold prices for abrocitinib and tralokinumab are not applicable as they are currently based on placeholder WAC prices and should be updated when WAC pricing is established.

Table 6.1. Annual Cost-Effectiveness Health Benefit Price Benchmarks for Abrocitinib, Baricitinib, Tralokinumab, Upadacitinib, and Dupilumab versus Standard of Care

Health Benefit Measure	Annual WAC	Annual Price at \$100,000 Threshold	Annual Price at \$150,000 Threshold	Discount from WAC to Reach Threshold Prices			
		Abrocitinib					
QALYs Gained	NA*	\$30,600	\$41,800	NA*			
evLYG	NA*	\$30,600	\$41,800	NA*			
Baricitinib							
QALYs Gained	\$29,000	\$24,400	\$33,300	0% to 16%			
evLYG	\$29,000	\$24,400	\$33,300	0% to 16%			
		Tralokinumab					
QALYs Gained	NA*	\$25,700	\$35,000	NA*			
evLYG	NA*	\$25,700	\$35,000	NA*			
Upadacitinib							
QALYs Gained	\$64,300	\$30,400	\$41,500	35% to 53%			
evLYG	\$64,300	\$30,400	\$41,500	35% to 53%			
Dupilumab							
QALYs Gained	\$41,800	\$29,000	\$39,500	6% to 31%			
evLYG	\$41,800	\$29,000	\$39,500	6% to 31%			

WAC: wholesale acquisition cost; evLYG: equal value life year gained; QALY: quality-adjusted life year

^{*} Not applicable (NA) as placeholder prices were used

New England CEPAC Votes

Table 6.2. New England CEPAC Votes on Long-Term Value for Money at Current Prices

Question	Low long-term value for money at current prices	Intermediate long-term value for money at current prices	High long-term value for money at current prices
Given the available evidence on comparative effectiveness and incremental cost-effectiveness, and considering other benefits, disadvantages, and contextual considerations, what is the long-term value for money of treatment with baricitinib versus usual care?	0	7	6
Given the available evidence on comparative effectiveness and incremental cost-effectiveness, and considering other benefits, disadvantages, and contextual considerations, what is the long-term value for money of treatment with upadacitinib versus usual care?	10	3	0

The panel voted on two therapies which already have a known price as they are approved for other indications. The majority of the panel voted that baricitinib represents either an "intermediate" or "high" value for money at current prices. The incremental cost-effectiveness ratio for baricitinib was \$71,600 per QALY gained.

The majority of the panel voted that upadacitinib represents a "low" value for money at current prices. The incremental cost-effectiveness ratio for upadacitinib was \$248,400 per QALY gained.

7. Potential Budget Impact

7.1. Overview of Key Assumptions

ICER used results from the cost-effectiveness model to estimate the potential total budgetary impact of each drug that awaits US regulatory approval (abrocitinib, baricitinib, tralokinumab, and upadacitinib) for moderate-to-severe atopic dermatitis. We used the WAC, an estimate of net price, and the three threshold prices (at \$50,000, \$100,000, and \$150,000 per QALY) for each drug in our estimates of budget impact. Consistent with the cost-effectiveness analysis, abrocitinib was assigned a placeholder net price equal to the average between baricitinib and upadacitinib's annual net prices. Similarly, tralokinumab was assigned a placeholder net price equal to dupilumab's annual net price. Placeholder prices will be updated in future versions of the report as actual pricing information becomes available.

The aim of the potential budgetary impact analysis is to document the percentage of patients who could be treated at selected prices without crossing a potential budget impact threshold that is aligned with overall growth in the US economy. For 2019-2020, the five-year annualized potential budget impact threshold that should trigger policy actions to manage access and affordability is calculated to be approximately \$819 million per year for new drugs.

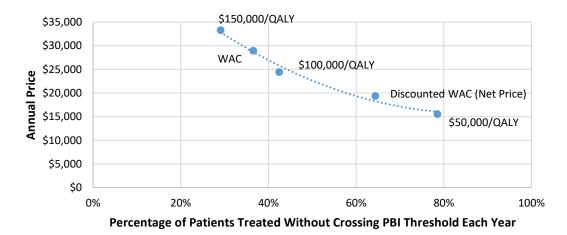
ICER's methods for estimating potential budget impact are described in detail in the Report Supplement Section F. For this analysis, we calculated the budget impact of new treatments (abrocitinib, baricitinib, tralokinumab, and upadacitinib) given these treatments' displacement of dupilumab plus usual care (assumed 10% mix) and usual care alone (90% mix) and by assigning 103,200 new individuals to each new treatment per year (for five years).

7.2. Results

Report Supplement Section F displays the average annual per patient budget impact findings across the five unit prices (WAC, discounted WAC, and the prices that achieve three different cost-effectiveness thresholds) for abrocitinib, baricitinib, tralokinumab, and upadacitinib. Further, Report Supplement Section F details the cumulative per-patient budget impact estimates for abrocitinib, baricitinib, tralokinumab, and upadacitinib.

Figures 7.1 - 7.4 illustrate the potential budget impact of abrocitinib, baricitinib, tralokinumab, and upadacitinib treatment of the eligible population, based on the respective five different unit prices (WAC, discounted WAC, and the prices that achieve three different cost-effectiveness thresholds). Upon removing the placeholder prices and across all four treatments, the range of the percentage of those treated without crossing the potential budget impact annual threshold was between 8%

and 79% for all prices evaluated (WAC unit price to the maximum price to achieve \$50,000 per QALY).


Figure 7.1. Budgetary Impact of Abrocitinib*

Percentage of Patients Treated Without Crossing PBI Threshold Each Year

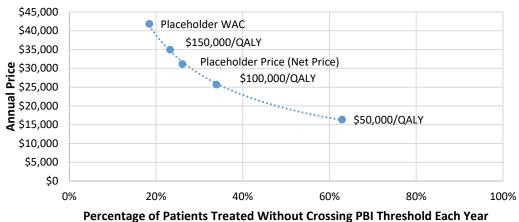
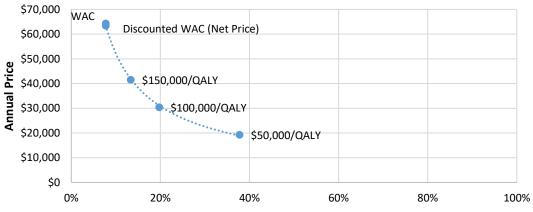

PBI: potential budget impact, QALY: quality-adjusted life-year, WAC: wholesale acquisition price *Based on placeholder prices

Figure 7.2. Budgetary Impact of Baricitinib

PBI: potential budget impact, QALY: quality-adjusted life-year, WAC: wholesale acquisition price


Figure 7.3. Budgetary Impact of Tralokinumab*

Teresinage of Fatients Treated Thinoat Grossing F. 21 Threshold 2001 Feat

PBI: potential budget impact, QALY: quality-adjusted life-year, WAC: wholesale acquisition price *Based on placeholder prices

Figure 7.4. Budgetary Impact of Upadacitinib

Percentage of Patients Treated Without Crossing PBI Threshold Each Year

PBI: potential budget impact, QALY: quality-adjusted life-year, WAC: wholesale acquisition price

8. Policy Recommendations

Following its deliberation on the evidence, the Comparative Effectiveness Public Advisory Council engaged in a moderated discussion with a policy roundtable about how best to apply the evidence on the use of oral abrocitinib, baricitinib, and upadacitinib, topical ruxolitinib cream, and subcutaneous tralokinumab. The policy roundtable members included three patient advocates, two clinical experts, two payers, and three representatives from the drug maker(s). The discussion reflected multiple perspectives and opinions, and therefore, none of the statements below should be taken as a consensus view held by all participants.

All Stakeholders

All stakeholders have a responsibility and an important role to play in ensuring that effective new treatment options for patients with atopic dermatitis are introduced in a way that will help reduce health inequities.

Safe and effective treatment for atopic dermatitis, especially for those with moderate to severe disease, remains a significant unmet health care need. Efforts are needed to ensure that new therapies for atopic dermatitis such as oral abrocitinib, baricitinib, and upadacitinib, topical ruxolitinib cream, and subcutaneous tralokinumab, improve the health of patients and families and do not aggravate existing health inequities. Clinical experts and patients highlighted that the high cost of new therapies may worsen disparities in accessing care. This may be due to lack of health insurance that limits access to specialists and the new therapies that they prescribe, or high deductible payments even for those with insurance may result in steep out of pocket costs. The cost of care is not the only factor that may contribute to health inequities. Our clinical experts noted that the appearance of the skin is a key contributor to measures of disease severity, and individuals with darker skin types may be assessed as having less severe skin involvement. Since educational materials often include photos of individuals with atopic dermatitis who have lighter skin types, those with darker skin may be more likely to be misdiagnosed.

To address these concerns:

Manufacturers should take the following actions:

 Follow the precedent of responsible pricing set by Sanofi/Regeneron with dupilumab and set the price for new treatments for atopic dermatitis in fair alignment with added benefits for patients. Take steps necessary to include a more diverse patient population in clinical trials, including adequate number of patients with ethnic and racial backgrounds who have darker skin types.

Payers should take the following actions:

 Ensure that benefit designs developed in conjunction with employers and other plan sponsors do not create requirements for out-of-pocket spending that create major barriers to appropriate access for vulnerable patients

Clinical specialty societies should take the following actions:

• Develop and disseminate educational materials and create measurable goals to demonstrate that clinicians are aware of the challenges of diagnosing atopic dermatitis in patients with darker skin types.

Payers

The large number of patients with varying levels of severity of atopic dermatitis, combined with the potential for side effects and the high annual prices for newer generation treatments, will lead payers to develop prior authorization criteria and to consider other limits on utilization.

Perspectives on specific elements of cost sharing and coverage criteria for oral abrocitinib, baricitinib, and upadacitinib, topical ruxolitinib cream, and subcutaneous tralokinumab within insurance coverage policy are discussed below.

Coverage Criteria

- Age: Age criteria are likely to follow the FDA label for each drug and will not be expanded to cover earlier ages in the case of drugs not approved for adolescents or children. Similarly, although there may be greater uncertainty in outcomes for younger patients, it seems unlikely that payers will use clinical trial eligibility criteria to narrow coverage if the FDA approval includes treatment of adolescents. Payers should have efficient mechanisms for clinicians to seek coverage exceptions for patients with serious unmet need who are near the cutoff for the age necessary for coverage.
- Clinical eligibility: There is no clear consensus on how to operationalize a definition of the
 FDA indication for treatment of patients with "moderate to severe" atopic dermatitis. The
 severity of atopic dermatitis can vary substantially over time and, from a patient's
 perspective, can include a complex combination of intensity of itch, location, body surface

area involvement, and degree of skin impairment. Some payers will allow clinician attestation, whereas others will adopt criteria based on clinical trial eligibility. Given the variability of patient phenotype and lack of familiarity among clinicians with scoring systems used in clinical trials, it is advisable for payers to create a broad, clinically relevant definition inclusive of multiple specific measures of disease intensity, e.g. "any of the following: BSA \geq 10%, IGA \geq 3, EASI \geq 16," or "affected BSA \geq 10% OR involvement of body sites that are difficult to treat with prolonged topical corticosteroid therapy (e.g. hands, feet, face, neck, scalp, genitals/groin, skin folds) or severe itch that has been unresponsive to topical therapies."

- In addition to a definition of severity, payers are likely to require that patients have received an adequate trial of topical therapy, e.g. a 30-day trial of prescription topical corticosteroid and/or topical calcineurin inhibitor OR the use of these medications is not medically advisable (as occurs with eyelid involvement). Payers should not require that this trial of topical agent(s) be immediately prior to the requested prescription; medical records indicating prior trial of topical therapy be sufficient.
- Potential criteria requiring prior use of phototherapy or systemic off-label treatment with agents like methotrexate is covered in the section on step therapy below.
- Ruxolitinib cream, if approved by the FDA, will likely have an indication for treatment of "mild to moderate" atopic dermatitis. The clinical criteria for coverage may be based on clinical trial eligibility (BSA ≥ 3% excluding scalp OR IGA 2-3) but will also likely require prior use of topical corticosteroids or calcineurin inhibitors. Another indication could be allowing the use of ruxolitinib cream in patients with severe atopic dermatitis for areas that do not clear adequately with systemic therapies.
- **Exclusion criteria**: There are no special medical comorbidities at this time that would serve as exclusion criteria for these treatments.
- **Duration of coverage and renewal criteria**: Initial coverage will likely be for a period of six to 12 months, which is long enough for dose titration, assessment of side effects, or disease progression.
- Clinical experts and payers felt that it would be appropriate to require attestation for
 continuation of therapy. The timing of such renewal may depend to some extent upon the
 specific therapy. For example, oral JAK inhibitors appear to have a quicker onset of action
 than biologics such as dupilumab or tralokinumab. Patients and clinicians felt that requiring
 submission of outcome measures to support continuation was not needed. For biologics
 that are given by injection, patients reported that they would not want to continue use in

the absence of improvement. For JAK inhibitors, given the potential for uncommon but serious side effects, long-term use in the absence of considerable benefit may also be unlikely. Most clinical experts suggested a three- to six-month period prior to renewal to be appropriate.

• Provider restrictions: Clinical experts agreed that it is reasonable to restrict prescriptions for dupilumab, abrocitinib, baricitinib, tralokinumab and upadacitinib to dermatologists or allergy specialists. Some payers may consider allowing prescription by generalist physicians able to work in consultation with specialists. The new therapies for moderate to severe atopic dermatitis require knowledge about evaluating and treating patients that most primary care clinicians are unlikely to have. Specialty clinicians are better suited to identify patients who are most likely to benefit, provide sufficient information for patients to make a well-informed decision, and monitor for response and side effects. Ruxolitinib cream may be covered with less restrictions on prescriber qualifications, but because it may be used in younger patients some payers may still wish to limit prescribing, at least initially, to specialists or generalist clinicians working in consultation with specialists.

Step Therapy

Payers should only use step therapy when it provides adequate flexibility to meet the needs of diverse patients and when implementation can meet high standards of transparency and efficiency.

Clinical experts and patient representatives stated that delayed and restricted access to treatment due to step therapy requirements for patients with moderate to severe atopic dermatitis is common. While it is possible to tailor step therapy in a clinically responsible fashion, it is often administered with documentation burdens and inadequate procedures for exceptions that make step therapy a source of great frustration and the cause of poor outcomes for some patients due to the discontinuation of medicine/missed doses. A particular area of concern raised by patients involved requirements to re-step through previously failed therapies when insurance changed.

Payers establishing step therapy with less expensive, off-label systemic agents and/or phototherapy should allow patients and clinicians to choose from multiple options rather than require patients to try multiple options.

Currently available specialty society guidelines are out of date and updated versions are expected in the coming year that may help shape policies regarding appropriate step therapy. Clinical experts at the ICER meeting stated that it may be reasonable for payers to require patients to step through a less expensive off-label systemic therapy, but these therapies have well-known adverse effects

and limited efficacy data that make it clinically inappropriate to require patients to attempt trials with all options prior to obtaining coverage for one of the newer agents. Prior agents include cyclosporine, azathioprine, methotrexate, mycophenolate mofetil, and interferon gamma. Cyclosporine may be a reasonable first-line agent for some patients, but the risk of renal toxicity requires patients to switch to another treatment after 6-12 months, so patients should not be required to try this agent after having an inadequate response to another systemic agent such as methotrexate that may be used for longer term use.

It is reasonable to include phototherapy as an option for first-step therapy, but lack of availability in many locations makes it inappropriate for payers to require patients to try phototherapy before receiving coverage for other options. The only exception would be a health plan/system that can provide good access to phototherapy at an out-of-pocket expense comparable to medication treatment options.

If multiple agents for severe atopic dermatitis are approved, payers should make available at least one biologic (dupilumab and/or tralokinumab) and at least one oral JAK inhibitor given how different these classes are in their onset of action and their risk profile. Clinician experts emphasized that the heterogeneity of atopic dermatitis and the challenges in defining and measuring disease severity support the need for having access to a range of different therapies. Specifically, clinical experts did not feel it would be appropriate to use step therapy that makes only one treatment available as the first step agent across biologics and oral JAK inhibitors. Some patients only have severe disease on a seasonal basis, making continual biologic treatment potentially less desirable than periodic use of a JAK inhibitor. Similarly, patients with asthma or more year-round severity are better candidates for biologic treatment. Clinical experts therefore strongly urged that at least one agent from both classes be available within any step therapy policy.

For ruxolitinib cream use in patients with mild to moderate atopic dermatitis, policy round table participants felt that stepping through other topical therapies such as a corticosteroid or calcineurin inhibitor was reasonable. Some clinical experts felt that since ruxolitinib cream may be used for younger patients as a steroid sparing medication, requiring stepping through a more potent topical steroid may not be appropriate. Manufacturers, Payers and Patient Advocacy Groups

Support pricing and rebate reform efforts that will create better rewards for clinical and economic value while also helping patients access and afford the treatments they need

It is widely recognized that the high prices of new prescription medications limit access to patients who may benefit from their use. Current pricing for medications is complex and the practice of using rebates and other methods to obscure the price of a therapy makes it difficult to assess whether the price being paid is in line with its effectiveness. Manufacturers and payers during the policy round table highlighted the potential impact of value-based pricing as helping to promote

transparency, affordability and promote access to new therapies. For example, upadacitinib has a much higher price after estimated rebates than other treatments, and it is possible that this drug can compete with a higher price largely because its manufacturer can tie formulary placement to rebates provided by other drugs made by that same manufacturer. This phenomenon, commonly known as "rebate walls," may in some cases provide an overall lower net cost to the payer, but it may only drive up the bubble between the list price and the net price for the benefit of pharmacy benefit managers and/or wholesalers, and it also creates true barriers to competition for new agents that have fewer indications or which are not made by companies that have other products whose rebates can be bundled together in negotiation. Unfortunately, there are no easy solutions to the role of rebates in the current system, but policy round table participants agreed that the federal government, plan sponsors, and other policy makers should work together to try to develop new approaches, such as indication-specific pricing, that can be piloted to create a pathway toward an end to the dominant role of bundled rebates.

Specialty Societies

Update treatment guidelines for patients with atopic dermatitis to reflect current treatment options in a form that is easy to interpret and use by clinicians, patients, and payers

Clinical societies should update their practice guidelines for managing patients with mild to moderate and moderate to severe atopic dermatitis to include newer therapies such as abrocitinib, baricitinib, dupilumab, tralokinumab and upadacitinib. Payers base their coverage decisions and integration of utilization tools to a great extent on clinical guidelines. The American Academy of Dermatology last updated it guidelines for the treatment of atopic dermatitis in 2014. The Joint Task Force on Practice Parameters for Allergy and Immunology, comprised of the American Academy of Allergy, Asthma, and Immunology, the American College of Allergy, Asthma, and Immunology, and the Joint Council of Allergy, Asthma, and Immunology issued updated treatment guidelines for atopic dermatitis in 2012. Current guidelines do not include newer approved agents for patients with atopic dermatitis such as dupilumab, approved by the FDA in 2017 or crisaborole cream, approved by the FDA in 2016; guidelines also do not discuss newer therapies that have not yet received FDA approval, such as IL-13 receptor antagonists and JAK inhibitors.

Policy round table participants highlighted that guidelines should not only provide information on options to be used by clinicians and patients for shared decision making, but also offer pragmatic advice about how to select specific therapies for specific subgroups. Payers expressed the need for updated guidelines from clinical societies with detailed guidance to permit meaningful stepped therapy approaches that permit reasonable clinical exceptions. For example, guidelines should distinguish use of agents in adolescents versus adults where there may be differences in the willingness to accept small but potentially serious risks and the need for rapid onset of

improvement.

Manufacturers and Researchers

Establish long-term registries that can be used to assess the benefits and harms of chronic use of oral JAK inhibitors for patients with atopic dermatitis

Concerns about uncommon but potentially serious risks of oral JAK inhibitors such as serious infections, cancer, blood clots and cardiovascular events when used for other conditions have led to boxed warnings. Whether these harms will also be seen when used in patients with moderate to severe atopic dermatitis requires larger, long-term follow-up studies that assess not only the durability of response but these infrequent risks among individuals using oral JAK inhibitors versus other biologic therapies such as dupilumab. Even the topical JAK inhibitor, ruxolitinib cream, has topical absorption and may warrant long-term follow-up, especially since it may be used in younger individuals. Even if it is not associated with systemic toxicity, topical ruxolitinib cream use might increase the risk of skin cancers.

Conduct research that directly compares real-world treatment options and sequential treatment effectiveness

Multiple stakeholders expressed concerns about the lack of information directly comparing new treatments and the need for active comparator trials. With the potential for having multiple newer therapeutic options that work through different mechanisms for patients with mild to moderate and moderate to severe atopic dermatitis, there is a great need for pragmatic research trials that compare different medications as they will be used by patients and clinicians in real world settings. Appropriate head-to-head trials would inform decision making by patients and clinicians. Trials that compare multiple treatment options, sequences and combinations are needed to identify comparative effectiveness, durability of benefit, and adverse effects. For example, trials should compare the net benefits of different oral JAK inhibitors or the tolerability and acceptance of oral versus injectable therapies for patients with moderate to severe disease.

Support the development of improved measures of disease severity and outcomes that are meaningful to patients

Clinical experts identified the lack of standard definitions of disease severity in atopic dermatitis as a challenge to identifying homogeneous patient populations for inclusion in clinical trials. We also heard from patient advocacy groups that endpoints used in clinical trials do not always measure what is most important to patients and families. For example, many endpoint measures focus on the appearance of the skin, something that may be important for an adolescent or young adult, but

may be less important for older patients. Though there are measures of itch, sleep, and interference in quality of life, these outcomes are not yet combined in ways that reflect the heterogeneity needed. Moreover, they are rarely translated into utility measures that can be incorporated into cost effectiveness analyses. Patient groups can take a leading role in collecting real-world data, as well as collaborating with researchers, manufacturers, and regulators to define a core set of severity and outcome measures and then in promoting their use in all clinical trials.

Supplemental Materials

A. Background: Supplemental Information

A1. Definitions

The primary outcomes in the pivotal trials studied include investigator assessed responses:

- 1. Eczema Area Severity Index score (EASI):120 This instrument represents a modification of the general schema used in the psoriasis area and severity index (PASI). The total score for the EASI ranges from 0 to a maximum of 72 with higher scores indicating greater severity. Total scores represent a sum of severity scores from four body regions (head and neck, upper extremities, trunk, and lower extremities). The score for each body region includes an assessment of severity for the four signs of erythema, induration/papulation/edema, excoriations, and lichenification. These are each assigned a score of 0 to 3 (None, mild, moderate, severe, respectively). These are added up for each anatomic region and multiplied by the percentage area involved and a proportionate body surface area assigned to each of the four body regions. The percentage area involved for each of the four body regions are assigned a proportional score from 0 to 6 (where 0= no eruption, 1 = \leq 10%, 2 = 10-29%, 3 – 30-49%, 4 = 50-69%, 5= 70-89%, and 6 = 90-100%). The proportionate body surface areas assigned to adults are 10% for the head and neck (20% for children), 20% for the upper extremities (same for children), 30% for trunk (same for children) and 50% for lower extremities (30% for children). Outcomes are assessed as the change in EASI response from baseline and are categorized as the percent improvement as noted below. The EASI-75 response is most commonly used as the primary outcome end point.
 - EASI-50: a percentage improvement of EASI score from baseline that is ≥ 50%
 - EASI-75: a percentage improvement of EASI score from baseline that is ≥ 75%
 - **EASI-90**: a percentage improvement of EASI score from baseline that is ≥ 90%
- 2. *Investigator's Global Assessment (IGA):* ¹²¹ This clinician-reported outcome measure provides an overall assessment of the severity of a patient's atopic dermatitis at a specific time point. There are different versions of the instrument with the most common using a 5- or 6- point rating scale. The 5-point scale ranges from 0 (clear), 1 (almost clear), 2 (mild), 3 (moderate), to 4 (severe). The 6-point scale ranges from 0 (clear), 1 (almost clear), 2 (mild), 3 (moderate), 4 (severe) to 5 (very severe). In many trials the primary response outcome or IGA response is defined as a score of 0 or 1 on the IGA. The IGA response can also include an improvement from baseline of \geq 2 points. Other cutoffs used in studies include \geq 3 or \geq 4 points.

- 3. Peak Pruritus Numerical Rating Scale (PP-NRS): 122 Itch (or pruritus) represents a key symptom for patients with atopic dermatitis and can be intense, persistent, and debilitating. This scale was developed to assess one dimension of pruritis, its severity. It is a single self-reported item designed to measure the severity of pruritis or peak pruritus, or 'worst' itch, over the previous 24 hours using an 11-point scale. The item asks: 'On a scale of 0 to 10, with 0 being "no itch" and 10 being "worst itch imaginable", how would you rate your itch at the worst moment during the previous 24 hours?' Improvement from baseline can be reported using a number of different cut points including, ≥ 2 , ≥ 3 , or ≥ 4 points
- 4. *Scoring Atopic Dermatitis (SCORAD):* Developed and validated by the European Task Force on Atopic Dermatitis, SCORAD is a composite severity index that combines objective symptoms (extent and intensity, and subjective criteria (pruritis and sleep loss). The extent of atopic dermatitis is expressed as the skin surface area involved. The intensity includes 6 specific symptoms: erythema, edema/papulation, oozing/crusts, excoriations, lichenification and dryness of the involved skin. These are rated from none (0), mild (1), moderate (2) or severe (3) for each item. The subjective symptoms are assessed using a visual analogue scale where 0 is no itch (or no sleeplessness) and 10 is the worst imaginable itch (or sleeplessness). The SCORAD index ranges from 0 to 103, with higher scores indicating worse severity.
- 5. **Dermatology Life Quality Index (DLQI):** The DLQI is a 10-item, validated dermatology specific quality of life assessment instrument used in clinical practice and clinical trials. It assesses six domains including: symptoms and feelings, daily activities, leisure, work and school, personal relationships, and adverse effects of treatment. Nine items have four response options: "not at all," "a little," "a lot," and "very much." One item asks about whether work or study has been prevented, and then (if "yes") to what degree has the skin condition been a problem ("a lot," "a little," or "not at all"). Individual items are summed to obtain a total score that can range from 0 to 30, with higher scores indicating worse health-related quality of life. Suggested interpretation of DLQI score for 0-1 indicates no impact, 2-5 indicates small impact, 6-10 indicates moderate impact, 11-20 indicates large impact and 21-30 indicates an extremely large impact on health-related quality of life for the skin condition.
- 6. *Children's Dermatology Life Quality Index (CLDQI):*¹²⁵ A version of the DLQI questionnaire designed to measure the impact of skin disease on the lives of children ages 4 to 16 years.
- 7. **Patient-Oriented Eczema Measure (POEM):** This simple, validated questionnaire assesses patient's symptoms and impact of atopic dermatitis in children and adults. It asks about symptoms over the prior week and includes seven questions about itch, sleep disturbance and whether the skin is weeping/oozing, cracked, flaking, dry/rough, or bleeding. These are rated from "no days," "1-2 days", "3-4 days", "5-6 days", or "every day". POEM scores range from 0 to 28 with higher

scores indicating worse disease severity and the minimal clinically important difference has been reported to be 3-4.

- 8. Atopic Dermatitis Impact Scale (ADerm-IS):¹²⁶ It includes three items (difficulty falling asleep, level of impact on sleep, burden of waking up at night) to be completed daily, assessing impact on sleep over the previous 24 h, and seven items (limitations in household activities, physical activities, social activities, difficulty concentrating, feeling self-conscious, embarrassed, sad) completed weekly to assess overall impact over the past 7 days. Responses are on an 11-point numeric rating scale from 0 "not [present]" to 10 "extremely [present]". Responses are on an 11-point numeric rating scale from 0 "not [present]" to 10 "extremely [present]".
- 9. **Dermatitis Family Impact Questionnaire (DFI):** A disease-specific measure to assess the impact of atopic dermatitis on the quality of life of parents and family members of affected children.
- 10. *Hospital Anxiety and Depression Scale (HADS):* Likert scale used to detect states of anxiety and depression; anxiety and depression subscales each with 7 items.
- 11. Work Productivity and Activity Impairment for Atopic Dermatitis (WPAI-AD): 128 The WPAI, a validated instrument is used to measure impairment in work productivity and daily activities. The questionnaire consists of six questions assessing the past 7 days: employment status (yes/no), work time missed due to atopic dermatitis (hours), work time missed due to other reasons (hours), actual work time (hours), impact of atopic dermatitis on work productivity while at work (0-10 point scale) and impact of atopic dermatitis on activities outside of work (0-10 point scale). Four scores are derived: absenteeism (percentage of time missed from work due to health), presenteeism (percentage of impairment while at work due to health), work productivity loss (aggregate of absenteeism and presenteeism) and activity impairment (percentage of impairment in daily activities due to health). Higher scores indicate a higher level of impairment. Higher scores indicate a higher level of impairment.

A2. Potential Cost-Saving Measures in Atopic Dermatitis

ICER includes in its reports information on wasteful or lower-value services in the same clinical area that could be reduced or eliminated to create headroom in health care budgets for higher-value innovative services (for more information, see https://icer-review.org/final-vaf-2017-2019/). These services are ones that would not be directly affected by therapies for atopic dermatitis (e.g., caregiver/family burden), as these services will be captured in the economic model. Rather, we are seeking services used in the current management of atopic dermatitis beyond the potential offsets that arise from a new intervention. During stakeholder engagement and public comment periods, ICER encouraged all stakeholders to suggest services (including treatments and mechanisms of care) currently used for patients with atopic dermatitis that could be reduced, eliminated, or made more efficient. No suggestions were received.

B. Patient Perspectives: Supplemental

Information

B1. Methods

In developing and executing this report, we received valuable input from individual patients and patient advocacy groups throughout the scoping and evidence development process. We received public comments on our draft scoping document from the following patient advocacy organizations: the National Eczema Association, the International Eczema Council, and the Allergy and Asthma Network. We also conducted a focus group with three patients and three caregivers that was arranged through the National Eczema Association. These interviews with patients and caregivers helped to illustrate the diversity of experiences of patients living with atopic dermatitis, as well as highlighted the health outcomes that were most important to them.

C. Clinical Guidelines

American Academy of Dermatology

Guidelines of care for the management of atopic dermatitis²⁸

The American Academy of Dermatology issued updated and expanded clinical guidelines for the treatment of atopic dermatitis in 2014, based on the initial guidelines that were published in 2004. These guidelines were developed by a working group of experts in the field who used an evidence-based approach to discuss diagnosis, assessment, safety, and efficacy of available treatments for atopic dermatitis.

Treatment with Topical Therapies

Non-pharmacologic treatments are recommended to maintain and prevent flares. These interventions include moisturizers, bathing practices (i.e., limited use of non-soap cleansers, subsequent moisturization), and wet-wrap therapy for those with moderate-to-severe atopic dermatitis. Wet wrap therapy can also be used in conjunction with topical corticosteroids during flares. These methods serve to minimize the severity of atopic dermatitis and reduce the amount of pharmacologic intervention needed.

Topical pharmacologic treatments are recommended to treat atopic dermatitis in patients that do not respond to the above interventions. These include topical corticosteroids (TCS) and topical calcineurin inhibitors (TCI), both of which are used for the treatment and management of adults and adolescent atopic dermatitis patients. TCS are recommended for both active and maintenance therapy in patients that have not had success in controlling symptoms with non-pharmacologic interventions. TCI are recommended as a second-line therapy if TCS has failed to control symptoms.

While other topical treatments exist for the maintenance of atopic dermatitis symptoms, they are not recommended lines of therapy. These topical therapies include antimicrobials, antiseptics, and antihistamines.

Treatment with Phototherapy and Systemic Agents

The American Academy of Dermatology recommends phototherapy as a second-line treatment for atopic dermatitis in children and adults, as well as maintenance therapy in cases of chronic disease. It can be used as monotherapy or in combination with other topical therapies. While it is considered a low-risk treatment, it is important to consider adverse events when used in

conjunction with other drugs. Phototherapy treatment is contingent on several patient factors, including availability, cost, skin type, and medical history.

The prescription of systemic agents for atopic dermatitis patients warrants several considerations related to disease contraindications, quality of life, and severity. Systemic treatment is recommended for patients with moderate-to-severe atopic dermatitis whose disease is not adequately controlled by topical regimens and phototherapy. The recommended off-label systemic therapies indicated by the guidelines include cyclosporine, azathioprine, and methotrexate. Mycophenolate mofetil and interferon gamma are also indicated as alternative off-label therapies for atopic dermatitis. The minimal effective dose of each systemic therapy should be used when treating patients. The guidelines also recommend against the use of systemic corticosteroids, as there are concerns with associated short- and long-term adverse events.

Use of Adjunctive Therapies

It is recommended that patient education always be included in conventional therapy. The use of TCS or TCI can also be used to prevent relapse after the disease has been stabilized.

Joint Task Force on Practice Parameters for Allergy and Immunology

Atopic Dermatitis: A practice parameter update 2012¹²⁹

The Joint Task Force on Practice Parameters for Allergy and Immunology issued an update in 2012 to their 2004 treatment guidelines for atopic dermatitis. The task force was comprised of the American Academy of Allergy, Asthma, and Immunology, the American College of Allergy, Asthma, and Immunology, and the Joint Council of Allergy, Asthma, and Immunology. In these suggestions for practice, the joint task force presents recommendations for first line management and treatment of atopic dermatitis, as well as guidance for severe cases that are more difficult to treat.

First Line Management and Treatment of Atopic Dermatitis

It is recommended that clinicians treat patients using a systematic approach, and the intensity of management and treatment should be determined by severity of the disease. Recommended treatments include skin hydration, topical anti-inflammatory medications, antipruritic therapy, antibacterial measures, and elimination of any environmental factors that may be exacerbating illness. Some of these common irritants include soaps, toiletries, wools, and chemicals that tend to trigger the itch-scratch cycle. Food allergies may also be considered as triggers for infants and children with atopic dermatitis.

Regardless of the severity of illness, it is imperative for clinicians to educate patients and family members on the chronic nature of the disease. Treating clinicians should review disease

exacerbating factors with their patients, as well as the safety and side effects of any prescribed medications.

Treatment of Severe Cases of Atopic Dermatitis

For severe cases of atopic dermatitis, it is recommended that patients are treated with systemic immunomodulating agents, such as cyclosporine, mycophenolate mofetil, azathioprine, interferon gamma, and corticosteroids. Wet dressings can also be used in combination with topical corticosteroids. However, it is important to note the potential serious adverse events associated with these drugs, and the risks and benefits should be discussed with the patient. Phototherapy can also be utilized as a means of treatment, particularly narrow-band UBV, which has been proven to be most effective in the U.S. For extremely severe cases of atopic dermatitis, hospitalization is recommended, as this could potentially remove a patient from environmental allergens and lessen the effects of disease associated stressors, such as sleep deprivation.

Investigative approaches to treating and managing atopic dermatitis are not recommended, as there is currently insufficient data to prove effectiveness. Examples of these interventions include intravenous immunoglobin, omalizumab, and rituximab.

National Institute for Health and Care Excellence (NICE)

Dupilumab for Treating Moderate to Severe: Recommendations¹³⁰

NICE released recommendations for use of dupilumab in 2018. Dupilumab is recommended as an option for treating moderate to severe atopic dermatitis in adults after not responding to at least one other systemic therapy such as cyclosporin, methotrexate, azathioprine, and mycophenolate, or if these are contraindicated or not tolerated. Response should be assessed at 16 weeks and therapy should be stopped if there has not been an adequate response. This is considered at least a 50% reduction in the EASI score (EASI 50) and at least a 4-point reduction in the DLQI, both compared to prior to starting treatment. The recommendation notes that skin color should be taken into account and clinical adjustments made if appropriate when assessing the EASI since it may affect the score. For the DLQI, adjustments can be made if appropriate to account for any physical, psychological, sensory, or learning disabilities, or communication difficulties that could affect patient responses.

Baricitinib for Treating Moderate to Severe: Recommendations¹³⁰

NICE released recommendations for use of baricitinib in March 2021. Baricitinib has similar recommendations as for dupilumab; adults with moderate to severe atopic dermatitis not responding to at least one other systemic therapy such as cyclosporin, methotrexate, azathioprine, and mycophenolate, or if these are contraindicated or not tolerated. Response should be assessed from 8 weeks and baricitinib should be stopped if there has not been an adequate response at 16 weeks, using the same criteria as for dupilumab.

D. Comparative Clinical Effectiveness:

Supplemental Information

D1. Detailed Methods

PICOTS

Population

The populations of focus for the review were:

- 1. Adults and children with moderate-to-severe atopic dermatitis whose disease has either not responded adequately to topical therapies or for whom topical therapies have not been tolerated or are medically inadvisable
- 2. Adults and children with mild-to-moderate atopic dermatitis

Additionally, based on the availability of data, we included evidence stratified by age (children: <12 years, adolescents: ≥12 years to <18 years, and adults: ≥18 years), duration (≤16 weeks and >16 weeks), and disease severity (mild, moderate, and severe).

Interventions

The interventions of interest included the following JAK inhibitors and monoclonal antibodies:

Moderate-to-severe atopic dermatitis (Population 1):

- Abrocitinib (Pfizer)
- Baricitinib (Olumiant[©], Eli Lilly)
- Upadacitinib (Rinvog[©], AbbVie)
- Tralokinumab (Leo Pharma)

Note that each of these therapies may be used alone or with topical therapies (including emollients with or without a topical corticosteroid or calcineurin inhibitor)

Mild-to-moderate atopic dermatitis (Population 2):

Ruxolitinib cream (Incyte)

Comparators

For moderate-to-severe atopic dermatitis (Population 1) we compared the interventions to:

- Dupilumab
- Each other
- Topical therapies (including emollients with or without a topical corticosteroid or calcineurin inhibitor)

We had initially included methotrexate as a comparator, but after additional input from clinical experts and other stakeholders we have not included comparisons with methotrexate in the report due to differences in study design, populations, and outcomes.

For mild-to-moderate atopic dermatitis (Population 2) we compared the intervention to:

- Topical emollient therapy alone
- Topical corticosteroids
- Topical calcineurin inhibitors
- Crisaborole cream

Outcomes

The outcomes of interest are described in the list below.

- Patient-reported pruritus or itching
- Eczema Area and Severity Index (EASI); 50, 75, and 90 or relative change from baseline
- Investigator's Global Assessment (IGA)
- Sleep
- Scoring Atopic Dermatitis (SCORAD) Score
- Patient-Oriented Eczema Measure (POEM)
- Dermatology Life Quality Index (DLQI)
- Children's Dermatology Life Quality Index (CDLQI)
- Anxiety and depression (e.g., Hospital Anxiety and Depression Scale [HADS])
- European Quality of Life-5 Dimensions (EQ-5D)
- Measures of productivity (e.g., Work Productivity and Activity Impairment Questionnaire [WPAI])
- Other patient-reported symptom and quality of life measures

- Safety
 - Adverse events (AEs)
 - Treatment-emergent adverse events (TEAEs)
 - Serious adverse events (SAEs)
 - Discontinuation due to AEs
 - Thrombotic events
 - Infections (serious, skin, herpetic)
 - Hematological abnormalities
 - Malignancy
 - Non-melanocytic skin cancer
 - All-cause mortality

Timing

Evidence on intervention effectiveness was derived from studies of at least four weeks duration.

Data Sources and Searches

Procedures for the systematic literature review assessing the evidence on new therapies for atopic dermatitis followed established best research methods. ^{131,132} We conducted the review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. ¹³³ The PRISMA guidelines include a checklist of 27 items described further in Table D1.1.

Table D1.1. PRISMA 2009 Checklist

		Checklist Items
		TITLE
Title	1	Identify the report as a systematic review, meta-analysis, or both.
		ABSTRACT
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.
		INTRODUCTION
Rationale	3	Describe the rationale for the review in the context of what is already known.
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).
		METHODS
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for each meta-analysis.

Risk of bias across	15	Specify any assessment of risk of bias that may affect the cumulative evidence
studies		(e.g., publication bias, selective reporting within studies).
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses,
		meta-regression), if done, indicating which were pre-specified.
		RESULTS
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the
		review, with reasons for exclusions at each stage, ideally with a flow diagram.
Study	18	For each study, present characteristics for which data were extracted (e.g., study
characteristics		size, PICOS, follow-up period) and provide the citations.
Risk of bias within	19	Present data on risk of bias of each study and, if available, any outcome level
studies		assessment (see item 12).
Results of individual	20	For all outcomes considered (benefits or harms), present, for each study: (a)
studies		simple summary data for each intervention group (b) effect estimates and
		confidence intervals, ideally with a forest plot.
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and
		measures of consistency.
Risk of bias across	22	Present results of any assessment of risk of bias across studies (see Item 15).
studies		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses,
		meta-regression [see Item 16]).
		DISCUSSION
Summary of	24	Summarize the main findings including the strength of evidence for each main
evidence		outcome; consider their relevance to key groups (e.g., health care providers,
		users, and policy makers).
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-
		level (e.g., incomplete retrieval of identified research, reporting bias).
Conclusions	26	Provide a general interpretation of the results in the context of other evidence,
		and implications for future research.
		FUNDING
Funding	27	Describe sources of funding for the systematic review and other support (e.g.,
		supply of data); role of funders for the systematic review.

From: Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials for relevant studies. Each search was limited to English-language studies of human subjects and excluded articles indexed as guidelines, letters, editorials, narrative reviews, case reports, or news items. We included abstracts from conference proceedings identified from the systematic literature search. All search strategies were generated utilizing the Population, Intervention, Comparator, and Study Design elements described above. The proposed search strategies included a combination of indexing terms (MeSH terms in MEDLINE and EMTREE terms in EMBASE), as well as free-text terms.

To supplement the database searches, we performed manual checks of the reference lists of included trials and systematic reviews and invited key stakeholders to share references germane to the scope of this project. We also supplemented our review of published studies with data from

conference proceedings, regulatory documents, information submitted by manufacturers, and other grey literature when the evidence met ICER standards (for more information, see https://icerreview.org/methodology/icers-methods/icer-value-assessment-framework-2/grey-literaturepolicy/). Where feasible and deemed necessary, we also accepted data submitted by manufacturers "in-confidence," in accordance with ICER's published guidelines on acceptance and use of such data (https://icer-review.org/use-of-in-confidence-data/).

Table D1.2. Search Strategy of Medline 1996 to Present with Daily Update and Cochrane Central Register of Controlled Trials (Interventions)*

4	
1	observational study.pt.
2	exp case-control studies/
3	exp cohort studies/
4	exp cross-over studies/
5	exp matched-pair analysis/
6	multicenter study.pt.
7	1 or 2 or 3 or 4 or 5 or 6
8	randomized controlled trial.pt.
9	controlled clinical trial.pt.
10	randomized.ab.
11	placebo.ab.
12	drug therapy.fs.
13	randomly.ab.
14	trial.ab.
15	groups.ab.
16	8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
	comparative study.pt. or compare.ab,ti. or compares.ab,ti. or compared.ab,ti. or comparing.ab,ti. or
17	comparison.ab,ti. or comparison.ab,ti. or comparative.ab,ti. or effective.ab,ti. or effectiveness.ab,ti. or
	versus.ab,ti. or vs.ab,ti.
18	7 and 17
19	16 or 18
20	exp animals/
21	humans.sh.
22	20 not 21
23	19 not 22
24	limit 23 to English language
25	(case reports or comment or congresses or editorial or letter or review).pt.
26	24 not 25
27	exp Eczema/ or eczema.mp.
28	exp Dermatitis, Atopic/
29	neurodermatitis.mp. or exp Neurodermatitis/
30	exp Dermatitis/ or dermatitis.mp.
31	27 or 28 or 29 or 30

32	Exp Abrocitinib/ or abrocitinib.mp.
33	(abrocitinib or "pf04965842" or pf04965842 or "pf 4965842" or pf4965842).ti,ab.
34	Exp baricitinib/ or baricitinib.mp.
35	(baricitinib or "incb 028050" or incb028050 or "incb 28050" or "ly 3009104" or ly3009104 or
55	olumiant).ti,ab.
36	Exp upadacitinib/ or upadacitinib.mp.
37	(upadacitinib or "abt 494" or abt494 or rinvoq or "upadacitinib hemihydrate" or "upadacitinib hydrate" or
37	"upadacitnib tartrate").ti,ab.
38	Exp tralokinumab/ or tralokinumab.mp.
39	(tralokinumab or "cat354" or cat354 or "cat-354").ti,ab.
40	Exp Ruxolitinib/ or ruxolitinib.mp.
41	(ruxolitinib or "incb 018424" or incb018424 or "incb 18424" or incb18424 or jakafi or jakavi or "ruxolitinib
41	maleate" or "ruxolitinib phosphate").ti,ab.
42	32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41
43	31 and 42
44	26 and 43

^{*}Search last updated on May 26, 2021.

Table D1.3. Search Strategy Medline 1996 to Present with Daily Update and Cochrane Central Register of Controlled Trials (Comparators)*

1	observational study.pt.
2	exp case-control studies/
3	exp cohort studies/
4	exp cross-over studies/
5	exp matched-pair analysis/
6	multicenter study.pt.
7	1 or 2 or 3 or 4 or 5 or 6
8	randomized controlled trial.pt.
9	controlled clinical trial.pt.
10	randomized.ab.
11	placebo.ab.
12	drug therapy.fs.
13	randomly.ab.
14	trial.ab.
15	groups.ab.
16	8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
	comparative study.pt. or compare.ab,ti. or compares.ab,ti. or compared.ab,ti. or comparing.ab,ti. or
17	comparison.ab,ti. or comparison.ab,ti. or comparative.ab,ti. or effective.ab,ti. or effectiveness.ab,ti. or
	versus.ab,ti. or vs.ab,ti.
18	7 and 17
19	16 or 18

20	exp animals/
21	humans.sh.
22	20 not 21
23	19 not 22
24	limit 23 to english language
25	(case reports or comment or congresses or editorial or letter or review).pt.
26	24 not 25
27	exp Eczema/ or eczema.mp.
28	exp Dermatitis, Atopic/
29	neurodermatitis.mp. or exp Neurodermatitis/
30	exp Dermatitis/ or dermatitis.mp.
31	27 or 28 or 29 or 30
32	dupilumab.mp.
33	(dupilumab or dupixent or "regn 668" or regn688 or "sar 231893" or sar231893).ti,ab
34	crisaborole.mp
35	(eucrisa or an2728 or 'an-2728').ti,ab
36	32 or 33 or 34 or 35
37	limit 38 to yr=2017-2021
38	31 and 37
39	26 and 38

^{*}Search last updated on May 26, 2021.

Table D1.4. Cochrane Database of Systematic Reviews*

1	eczema.mp.
2	neurodermatitis.mp.
3	dermatitis.mp.
4	atopic dermatitis'.mp.
5	1 or 2 or 3 or 4
6	abrocitinib.mp.
7	(abrocitinib or "pf04965842" or pf04965842 or "pf 4965842" or pf4965842).ti,ab.
8	baricitinib.mp.
9	(baricitinib or "incb 028050" or incb028050 or "incb 28050" or "ly 3009104" or ly3009104 or olumiant).ti,ab.
10	upadacitinib.mp.
11	(upadacitinib or "abt 494" or abt494 or rinvoq or "upadacitinib hemihydrate" or "upadacitinib hydrate" or "upadacitnib tartrate").ti,ab.
12	tralokinumab.mp.
13	(tralokinumab or "cat354" or cat354 or "cat-354").ti,ab.
14	ruxolitinib.mp.

15	(ruxolitinib or "incb 018424" or incb018424 or "incb 18424" or incb18424 or jakafi or jakavi or
	"ruxolitinib maleate" or "ruxolitinib phosphate").ti,ab.
16	methotrexate.mp
17	(amethopterin or 'methotrexate hydrate' or mexate).ti,ab
18	6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17
19	dupilumab.mp.
20	(dupilumab or dupixent or "regn 668" or regn688 or "sar 231893" or sar231893).ti,ab
21	crisaborole.mp
22	(eucrisa or an2728 or 'an-2728').ti,ab
23	('topical corticosteroid\$' or 'topical emollient\$' or 'topical therp\$').mp
24	calcineurin inhibitor\$'.mp.
25	19 or 20 or 21 or 22 or 23 or 24
26	limit 25 to dd=20200201-20210121
27	18 or 26
28	5 and 27

^{*}Search last updated on May 26, 2021.

Table D1.5. Search Strategy of EMBASE SEARCH (Interventions)*

#1	'eczema'/exp OR eczema
#2	'atopic dermatitis'/exp OR 'atopic dermatitis'
#3	'neurodermatitis'/exp OR neurodermatitis
#4	'dermatitis'/exp OR dermatitis
#5	#1 OR #2 OR #3 OR #4
#6	'abrocitinib'/exp OR abrocitinib
#7	abrocitinib:ti,ab OR 'pf 04965842':ti,ab OR pf04965842:ti,ab OR 'pf 4965842':ti,ab OR pf4965842:ti,ab
#8	'baricitinib'/exp OR baricitinib
#9	baricitinib:ti,ab OR 'incb 028050':ti,ab OR 'incb 28050':ti,ab OR 'ly 3009104:ti,ab' OR olumiant:ti,ab
#10	'upadacitinib'/exp OR upadacitinib
#11	upadacitinib:ti,ab OR 'abt 494':ti,ab OR rinvoq:ti,ab OR 'upadacitinib hemihydrate':ti,ab OR 'upadacitinib
#11	hydrate':ti,ab OR 'upadacitinib tartrate':ti,ab
#12	'tralokinumab'/exp OR tralokinumab
#13	tralokinumab:ti,ab OR 'cat 354':ti,ab OR 'cat-354':ti,ab OR cat354:ti,ab
#14	'ruxolitinib'/exp OR ruxolitinib
#15	ruxolitinib:ti,ab OR 'incb 018424':ti,ab OR 'incb 18424':ti,ab OR 'incb 424':ti,ab OR jakafi:ti,ab OR
#13	jakavi:ti,ab OR 'ruxolitinib maleate':ti,ab OR 'ruxolitinib phosphate':ti,ab
#16	#6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15
#17	#5 AND #16
#18	random*:ti OR placebo*:ti OR 'single blind*':ti OR 'double blind*':ti OR 'triple blind*':ab,ti
#19	'cohort analysis'/de OR 'cohort analysis'
#20	'longitudinal study'/de OR 'longitudinal study'

#21	'prospective study'/de OR 'prospective study'
#22	'follow-up'/de OR 'follow-up'
#23	'case control study'/de OR 'case control study'
#24	'matched-pair analysis'/de OR 'matched-pair analysis'
#25	'cross-over study'/de OR 'cross-over study'
#26	'cohort*':ti,ab
#27	'case* and control*':ti,ab
#28	#19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27
#29	'compar*':ti,ab
#30	'effective*':ti,ab
#31	'versus':ti,ab
#32	'vs.':ti,ab
#33	#29 OR #30 OR #31 OR #32
#34	#28 AND #33
#35	#18 OR #34
#36	#17 AND #35
#37	('animal'/exp OR 'nonhuman'/exp OR 'animal experiment'/exp) NOT 'human'/exp
#38	#36 NOT #37
#39	#38 AND [english]/lim
#40	#39 NOT [medline]/lim
	Lest and database Annua C 2024

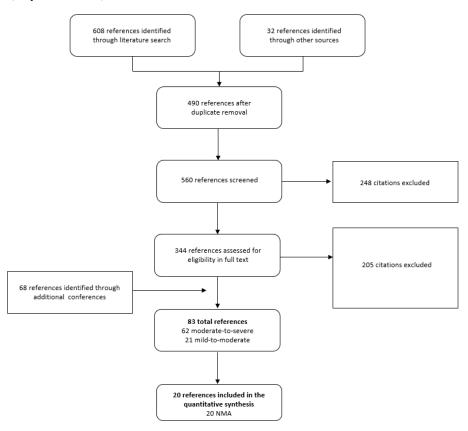
^{*}Search last updated on May 26, 2021.

Table D1.6. Search Strategy of EMBASE SEARCH (Comparators)*

#1	'eczema'/exp OR eczema
#2	'atopic dermatitis'/exp OR 'atopic dermatitis'
#3	'neurodermatitis'/exp OR neurodermatitis
#4	'dermatitis'/exp OR dermatitis
#5	#1 OR #2 OR #3 OR #4
#6	'dupilumab'/exp OR dupilumab
#7	dupilumab:ti,ab OR dupixent:ti,ab OR 'regn 668':ti,ab OR regn668:ti,ab OR 'sar 231893':ti,ab OR
#7	sar231893:ti,ab
#8	'crisaborole'/exp OR crisaborole
#9	eucrisa:ti,ab OR staquis:ti,ab OR 'an 2728':ti,ab OR 'an-2728':ti,ab OR an2728:ti,ab
#10	#6 OR #7 OR #8 OR #9
#11	#5 AND #10
#12	random*:ti OR placebo*:ti OR 'single blind*':ti OR 'double blind*':ti OR 'triple blind*':ab,ti
#13	'cohort analysis'/de OR 'cohort analysis'
#14	'longitudinal study'/de OR 'longitudinal study'
#15	'prospective study'/de OR 'prospective study'
#16	'follow-up'/de OR 'follow-up'
#17	'case control study'/de OR 'case control study'
#18	'matched-pair analysis'/de OR 'matched-pair analysis'

#19	'cross-over study'/de OR 'cross-over study'
#20	'cohort*':ti,ab
#21	'case* and control*':ti,ab
#22	#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21
#23	'compar*':ti,ab
#24	'effective*':ti,ab
#25	'versus':ti,ab
#26	'vs.':ti,ab
#27	#23 OR #24 OR #25 OR #26
#28	#22 AND #27
#29	#12 OR #28
#30	#11 AND #29
#31	#30 NOT ('animal experiment'/de OR 'animal model'/de OR 'case report'/de OR 'human cell'/de OR 'human tissue'/de OR 'nonhuman'/de OR 'practice guideline'/de OR 'questionnaire'/de OR 'chapter'/it OR 'editorial'/it OR 'letter'/it OR 'note'/it OR 'review'/it OR 'short survey'/it)
#32	#31 NOT (('animal'/exp OR 'nonhuman'/exp OR 'animal experiment'/exp) NOT 'human'/exp)
#33	#32 AND [2017-2021]/py
#34	#33 NOT [medline]/lim
#35	#34 AND [english]/lim

^{*}Search last updated on May 26, 2021.


Table D1.7. Search Strategy of EMBASE SEARCH (Systematic Reviews)*

#1	legrama!/ovn OB legrama! OB legrama!/ovn OB egrama
	'eczema'/exp OR 'eczema' OR 'eczema'/exp OR eczema
#2	'atopic dermatitis'/exp OR 'atopic dermatitis'
#3	'neurodermatitis'/exp OR neurodermatitis
#4	'dermatitis'/exp OR dermatitis
#5	#1 OR #2 OR #3 OR #4
#6	'abrocitinib'/exp OR abrocitinib
#7	abrocitinib:ti,ab OR 'pf 04965842':ti,ab OR pf04965842:ti,ab OR 'pf 4965842':ti,ab OR pf4965842:ti,ab
#8	baricitinib'/exp OR baricitinib
#9	baricitinib:ti,ab OR 'incb 028050':ti,ab OR 'incb 28050':ti,ab OR 'ly 3009104:ti,ab' OR olumiant:ti,ab
#10	'upadacitinib'/exp OR upadacitinib
#11	upadacitinib:ti,ab OR 'abt 494':ti,ab OR rinvoq:ti,ab OR 'upadacitinib hemihydrate':ti,ab OR 'upadacitinib
#11	hydrate':ti,ab OR 'upadacitinib tartrate':ti,ab
#12	'tralokinumab'/exp OR tralokinumab
#13	tralokinumab:ti,ab OR 'cat 354':ti,ab OR 'cat-354':ti,ab OR cat354:ti,ab
#14	'ruxolitinib'/exp OR ruxolitinib
#15	ruxolitinib:ti,ab OR 'incb 018424':ti,ab OR 'incb 18424':ti,ab OR 'incb 424':ti,ab OR jakafi:ti,ab OR
#15	jakavi:ti,ab OR 'ruxolitinib maleate':ti,ab OR 'ruxolitinib phosphate':ti,ab
#16	'methotrexate'/exp OR methotrexate
#17	aminopterin:ti,ab OR mtx:ti,ab OR rasuvo:ti,ab OR otrexup:ti,ab OR xatmep:ti,ab OR trexall:ti,ab
#18	#6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17
#19	'dupilumab'/exp OR dupilumab

#20	dupilumab:ti,ab OR dupixent:ti,ab OR 'regn 668':ti,ab OR regn668:ti,ab OR 'sar 231893':ti,ab OR sar231893:ti,ab
#21	'crisaborole'/exp OR crisaborole
#22	eucrisa:ti,ab OR staquis:ti,ab OR 'an 2728':ti,ab OR 'an-2728':ti,ab OR an2728:ti,ab
#23	'calcineurin inhibitor\$':ti,ab
#24	steroid:ti,ab OR topical:ti,ab OR 'topical emollient\$':ti,ab OR 'topical corticosteroid\$':ti,ab
#25	#19 OR #20 OR #21 OR #22 OR #23 OR #24
#26	#5 AND #25
#27	#26 AND [1-2-2020]/sd
#28	#5 AND #18
#29	#27 OR #28
#30	#29 AND ([systematic review]/lim OR [meta analysis]/lim)
#31	#30 AND [humans]/lim
#32	#31 NOT [medline]/lim

^{*}Search last updated on May 26, 2021.

Figure D1.1. PRISMA Flow Chart Showing Results of Literature Search for Abrocitinib, Baricitinib, Tralokinumab, Upadacitinib, and Ruxolitinib Cream

Study Selection

We performed screening at both the abstract and full-text levels. According to the inclusion and exclusion criteria described earlier, a single investigator screened all abstracts identified through electronic searches. We did not exclude any study at abstract-level screening due to insufficient information. For example, an abstract that did not report an outcome of interest would be accepted for further review in full text. We retrieved the citations that were accepted during abstract-level screening for full-text appraisal. One investigator reviewed full papers and provided justification for the exclusion of each excluded study.

Data Extraction and Quality Assessment

We used criteria published by the US Preventive Services Task Force (USPSTF) to assess the quality of RCTs and comparative cohort studies, using the categories "good," "fair," or "poor" (<u>Table D3.1</u> and <u>D3.6.</u>¹³⁴ Guidance for quality ratings using these criteria is presented below, as is a description of any modifications we made to these ratings specific to the purposes of this review.

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study; reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention is paid to confounders in analysis. In addition, intention to treat analysis is used for RCTs.

Fair: Studies were graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all-important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs.

Poor: Studies were graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.

Note that case series are not considered under this rating system – because of the lack of comparator, these are generally considered to be of poor quality.

Assessment of Level of Certainty in Evidence

We used the <u>ICER Evidence Rating Matrix</u> to evaluate the level of certainty in the available evidence of a net health benefit among each of the interventions of focus (see Figure 3.2 of the Report).¹³⁵

Assessment of Bias

As part of our quality assessment, we evaluated the evidence base for the presence of potential publication bias. We performed an assessment of publication bias for abrocitinib, baricitinib, upadacitinib, tralokinumab, and ruxolitinib cream using the clinicaltrials.gov database of trials. We scanned the site to identify studies completed more than two years ago that would have met our inclusion criteria and for which no findings have been published and did not find any evidence of publication bias.

Data Synthesis and Statistical Analyses

Data on relevant outcomes were summarized in evidence tables (see <u>section D3</u>) and synthesized qualitatively in the body of the review. In addition, we evaluated the comparative efficacy of abrocitinib, baricitinib, upadacitinib, tralokinumab, and dupilumab for adults ≥ 18 years old with moderate-to-severe atopic dermatitis by means of network meta-analysis (NMA), where feasible. Based on data availability, our NMA evaluated IGA, EASI 50, EASI 75, EASI 90, and PP-NRS ≥4-point improvement outcomes at 12 and 16 weeks. Network Meta-Analysis Supplemental Information below (Section D2) contains a detailed description of the NMA methods. Due to inconsistent or limited data reporting, other outcomes were only described narratively in the body of the report or in <u>Section D3</u> of the Report Supplement.

D2. Network Meta-Analysis Supplemental Information

NMA Methods

We evaluated the feasibility of conducting quantitative synthesis by exploring the differences in study populations, study design, analytic methods, and outcome assessment for each outcome of interest. Trials deemed sufficiently similar in terms of population, intervention type, duration, and outcome definitions were included in the NMAs. While most trials that met the NMA eligibility criteria enrolled patients ≥18 years old, the pivotal trials of abrocitinib (JADE MONO-1 and JADE MONO-2) and the pivotal trials for upadacitinib (MEASURE UP 1, MEASURE UP 2, and AD-UP) enrolled patients ≥12 years old. In order to analyze all trials in a comparable fashion in a single network, we searched for subgroup evidence stratified by age on these trials. We received confidential data from the manufacturers for trials where the subgroup data by age were not publicly presented.

Based on data availability, we developed quantitative, indirect comparisons of abrocitinib, baricitinib, upadacitinib, tralokinumab, and dupilumab using a Bayesian network meta-analysis (NMA) for IGA, EASI 50, EASI 75, EASI 90, and PP-NRS ≥4-point improvement at 12 and 16 weeks in patients ≥18 years old. The primary endpoints of the abrocitinib trials, JADE MONO-1, JADE MONO-2, and JADE COMPARE, were measured at 12 weeks, while the remaining trials' primary endpoints were measured at 16 weeks. IGA and PP-NRS ≥4-point outcomes were analyzed as dichotomous outcomes ("yes" or "no") using a binomial likelihood and log link. EASI outcomes were analyzed as ordered categorical data with up to four distinct groups: i.e., EASI<50, EASI 50, EASI 75, and EASI 90, representing a reduction in the Eczema Area Severity Index (EASI) of less than 50%, at least 50%, at least 75%, and at least 90% respectively. Using the EASI outcomes reported in studies, we created mutually exclusive groups by re-classifying the data as <50, 50-74, 75-89, ≥90. Therefore, a multinomial likelihood model with a probit link with methods from the National Institute for Health and Clinical Excellence Decision Support Unit was used.¹³⁶

Given the expected differences in the clinical efficacy of treatment in the monotherapy trials and combination trials, separate networks of the monotherapy trials and combination trials were developed. We explored both random- and fixed-effects models for each network and compared the goodness of fit to the data. We considered the model with the lowest deviance information criterion (DIC) to have the "best" fit to the data. We used fixed-effects models for the NMAs of the combination trials, given the limited data available for each network. Adjusting for placebo response in an NMA design is frequently performed to control for differences in population characteristics and baseline risk. We considered placebo adjustment for all NMAs and reported results where the adjusted NMA model provided a better fit of the data. The model with placebo

adjustment was considered a better fit if the regression coefficient was statistically significant and there was a reduction in between-trial heterogeneity.

Binomial NMAs were conducted using the IndiRect NMA platform (CRG-EVERSANA, 2020TM). Multinomial NMAs were conducted using JAGS software (version 4.3.0) via R using the R2jags package. For all analyses, we used noninformative prior distributions for all model parameters. We initially discarded the first 50,000 iterations as "burn-in" and base inferences on an additional 50,000 iterations using three chains. Convergence of chains was through visual examination of the Brook–Gelman–Rubin diagnostic and historical plots. League tables were presented for the treatment effects (RR of each drug versus each other and placebo, along with 95% credible intervals (95% CrI). Table D2.1 lists the NMAs we conducted and the details of the model, and Table X lists the trials included in our NMAs as well as reasons for exclusion of trials.

Table D2.1. NMAs Conducted & Presented

Outcome	Trial Type	Model	Number of trials
EASI	a) Monotherapy only	Multinomial with probit link	a) 15
	b) Combination only		b) 6
IGA	a) Monotherapy only	Binomial with log link	a) 14
	b) Combination only		b) 6
PP-NRS≥4-point	a) Monotherapy only	Binomial with log link	a) 14
	b) Combination only		b) 5

Table D2.2. Network Meta-Analysis Inputs for Monotherapy NMAs (All data inputs are in adults 18 and older)

	Wk		IGA Response		PP-N	RS≥4	EASI Scores						
Trial		Arm			Response		50		75		9	0	
			N	n	N	n	N	n	N	n	N	n	
		ABRO 200 mg	120	58	121	68			120	78			
JADE MONO-1	12	ABRO 100 mg	122	28	122	44			122	47			
		РВО	60	4	60	11			60	7			
		ABRO 200 mg	140	53	140	75			139	85			
JADE MONO-2	12	ABRO 100 mg	139	42	141	67			139	62			
		РВО	70	7	70	8			70	8			
		ABRO 200 mg	48	21	44	28	48	38	48	31	48	21	
Gooderham 2019	12	ABRO 100 mg	54	16	50	25	54	30	54	22	54	14	
		PRO	52	3	51	13	52	14	52	8	52	5	
	4.6	TRA 300 mg	601	95	594	119	601	250	601	150	601	87	
ECZTRA 1	16	РВО	197	14	194	20	197	42	197	25	197	8	
		TRA 300 mg	591	131	575	144	591	295	591	196	591	108	
ECZTRA 2	16	РВО	201	22	200	19	201	41	201	23	201	11	
	16	UPA 30 mg	243	148	238	145			243	192			
MEASURE UP 1		UPA 15 mg	239	119	234	125			239	166			
		РВО	241	21	233	26			241	43			
		UPA 30 mg	247	125	246	150			247	180			
MEASURE UP 2	16	UPA 15 mg	243	93	240	103			243	144			
		РВО	242	12	238	24			242	32			
Hoods Ho	16	UPA 30 mg	NR	NR	340	188			348	247	348	211	
Heads Up		DUP 300 mg	NR	NR	336	120			344	210	344	133	
	16	UPA 30 mg	42	21	36	19	42	35	42	29	42	21	
Guttman-Yassky 2020		UPA 15 mg	42	13	32	19	42	30	42	22	42	11	
2020		РВО	41	1	35	2	41	9	41	4	41	1	
		BARI 2 mg	123	14	100	12	123	37	123	23	123	13	
BREEZE-AD 1	16	BARI 1 mg	127	15	105	11	127	32	127	22	127	11	
		РВО	249	12	222	16	249	38	249	22	249	12	
		BARI 2 mg	123	13	106	16	123	34	123	22	123	11	
BREEZE-AD 2	16	BARI 1 mg	125	11	100	6	125	23	125	16	125	8	
		РВО	244	11	213	10	244	30	244	15	244	6	
		BARI 2 mg	146	35	131	33	146	51	146	43	146	30	
BREEZE-AD 5	16	BARI 1 mg	147	19	132	21	147	29	147	19	147	11	
		РВО	147	8	123	7	147	19	147	12	147	5	
5010.1	16	DUP 300 mg Q2W	244	85	213	87	224	154	224	115	224	80	
SOLO 1	16	РВО	224	23	212	26	224	55	224	33	224	17	
SOLO 2	16	DUP 300 mg Q2W	233	84	225	81	233	152	233	103	233	70	

			IGA Response		PP-NRS≥4 Response		EASI Scores						
Trial	Wk	Arm					50		75		90		
			N	n	N	n	N	n	N	n	N	n	
		PBO	236	20	221	21	236	52	236	28	236	17	
THACI 2016	16	DUP 300 mg Q2W	64	19	NR	NR	64	50	64	34	64	19	
THACI 2016		PBO	61	1	NR	NR	61	18	61	7	61	2	

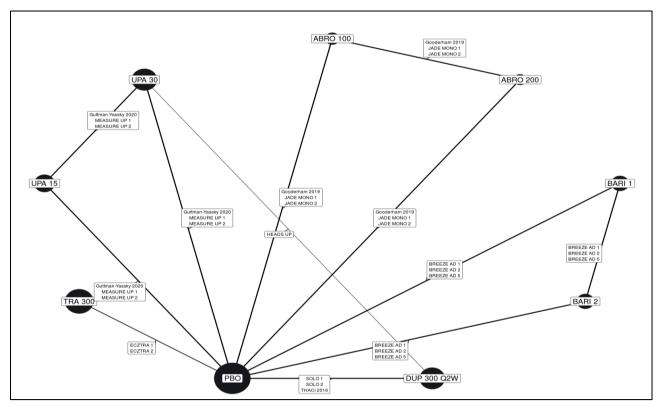

ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, N: total number, NR: not reported, Q2W: every two weeks, TCS: topical corticosteroid, TRA: tralokinumab, UPA: upadacitinib, Wk: week

Table D2.3. Network Meta-Analysis Inputs for Combination Therapy NMAs (All data inputs are in adults 18 and older)

			IG	iΑ	PP-N	RS≥4	EASI Scores						
Trial	Wk	Arm	Response		Response		50		75		90		
			N	n	N	n	N	n	N	n	N	n	
		ABRO 200 mg	221	105	172	108	221	193	221	157	221	108	
IADE COMPARE*	16	ABRO 100 mg	230	80	168	79	229	186	229	138	229	87	
JADE COMPARE*	10	DUP 300 mg	232	90	189	108	232	195	232	152	232	90	
		РВО	124	16	94	27	124	71	124	38	124	14	
CCTDA 2*	16	TRA 300 mg + TCS	252	98	249	113	252	200	252	141	252	83	
ECZTRA 3*	10	PBO + TCS	126	33	126	43	126	73	126	45	126	27	
		UPA 30 mg + TCS	260	150	258	168			260	201			
AD-UP*	16	UPA 15 mg + TCS	261	107	252	134			261	172			
		PBO + TCS	264	30	256	39			264	68			
BREEZE-AD7*	16	BARI 2 mg + TCS	109	26	97	37	109	70	109	47	109	18	
BREEZE-AD7	16	PBO + TCS	109	16	104	21	109	45	109	25	109	15	
Cuttman Vassky 2010*	16	BARI 2 mg + TCS	37	8	NR	NR	37	21	37	11	37	7	
Guttman-Yassky 2018*	16	PBO + TCS	49	4	NR	NR	49	18	49	10	49	3	
LIBERTY AD CHRONOS*	16	DUP 300 mg Q2W + TCS	106	41	102	60	106	85	106	73	106	42	
LIDER I I AD CHRUNUS"	10	PBO + TCS	315	39	299	59	315	118	315	73	315	35	

ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, N: total number, NR: not reported, Q2W: every two weeks, TCS: topical corticosteroid, TRA: tralokinumab, UPA: upadacitinib, Wk: week

Figure D2.1. Network Figure. Monotherapy Trials

ABRO 100 JADE COMPARE UPA 30 ABRO 200 JADE COM JADE COMPARE UPA 15 BARI 2 JADE COMPARE JADE AD UF AD UP BREEZE AD DUP 300 Q2W ECZTRA 3 PBO

Figure D2.2. Network Figure. Combination Trials

Network Meta-Analysis Results: Monotherapy RCTs

For the EASI NMA, the unadjusted model (DIC: 195) was associated with improved fit compared to the adjusted model (DIC: 203); the estimated regression coefficient was not significant in the adjusted model (-0.33; 95% CrI: -1.18 to 0.54), and the interstudy SD with was increased in magnitude from 0.05 (95% CrI: 0.002−0.16) to 0.007 (95% CrI: 0.004−0.18) with placebo adjustment. For the IGA (DIC:231) and PP-NRS≥4-point improvement (DIC: 243) models, the unadjusted models were also associated with a better fit relative to the adjusted model (the interstudy SD followed a similar trend as presented for EASI model). Therefore, we presented the result of the unadjusted models for all outcomes.

<u>EASI 50 (15 trials)</u>: Results were similar to EASI 75 and EASI 90 presented in the body of the report. All interventions showed statistically significantly greater EASI 50 responses than placebo and baricitinib 1 mg (<u>Table D2.4</u>). Upadacitinib 30 mg was more likely to achieve EASI 50 compared to dupilumab. However, there were no statistically significant differences with abrocitinib (both

doses) and upadacitinib 15 mg compared to dupilumab. In comparison, dupilumab showed a statistically significantly greater EASI 50 response than tralokinumab and baricitinib (both doses).

<u>IGA (14 trials):</u> Results were similar to EASI responses. All interventions showed statistically significantly higher efficacy on IGA, as defined in the trials, compared to placebo (<u>Table D2.5</u>). Upadacitinib 30 mg was more likely to achieve IGA response compared to all interventions. However, upadacitinib 30 mg was not statistically better than abrocitinib 200 mg. Additionally, there were no statistically significant differences with abrocitinib (both doses), upadacitinib 15 mg, and baricitinib 2 mg compared to dupilumab. In comparison, dupilumab showed statistically significantly greater IGA response compared to tralokinumab and baricitinib 1 mg.

<u>PP-NRS≥4-point improvement (14 trials):</u> While a clinically meaningful improvement in PP-NRS ranges from an improvement of 2-4-points, the available data for the interventions is almost entirely comprised of ≥4-point improvement. Apart from baricitinib 1 mg, the remaining interventions showed statistically significant responses compared to placebo (Table D2.6). Further, there was no statistically significant differences between abrocitinib (both doses), baricitinib 2mg, tralokinumab, upadacitinib (both doses) compared to dupilumab.

Table D2.4. Relative Risks for EASI 50 in Monotherapy RCTs in Adults

UPA 30 mg								
1.10 (0.98-1.26)	ABRO 200 mg							
1.14 (1.07-1.24)	1.04 (0.90-1.19)	UPA 15 mg		_				
1.25 (1.15-1.36)	1.14 (0.98-1.30)	1.09 (0.98-1.22)	DUP 300mg		_			
1.45 (1.22-1.77)	1.32 (1.17-1.52)	1.27 (1.05-1.56)	1.16 (0.97-1.44)	ABRO 100 mg		_		
1.75 (1.50-2.10)	1.59 (1.31-1.95)	1.53 (1.29-1.84)	1.40 (1.18-1.69)	1.21 (0.95-1.53)	TRA 300 mg			
1.81 (1.53-2.20)	1.64 (1.34-2.02)	1.58 (1.32-1.93)	1.45 (1.20-1.77)	1.25 (0.97-1.59)	1.03 (0.82-1.30)	BARI 2 mg		
2.54 (2.04-3.23)	2.31 (1.80-2.98)	2.22 (1.77-2.85)	2.03 (1.61-2.60)	1.75 (1.31-2.31)	1.45 (1.10-1.91)	1.40 (1.15-1.73)	BARI 1 mg	
3.74 (3.46-4.05)	3.40 (2.98-3.82)	3.26 (2.97-3.58)	2.99 (2.71-3.29)	2.58 (2.12-3.04)	2.14 (1.80-2.47)	2.07 (1.72-2.43)	1.47 (1.17-1.82)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.5. Relative Risks for IGA in Monotherapy RCTs in Adults

UPA 30 mg		_						
1.29 (1.09 -1.57)	UPA 15 mg		_					
1.44 (0.95-2.26)	1.12 (0.7-1.8)	ABRO 200 mg		_				
1.85 (1.28-2.64)	1.43 (0.94-2.11)	1.29 (0.77-2.06)	DUP 300mg		_			
2.33 (1.4-3.98)	1.8 (1.04-3.18)	1.61 (1.21-2.19)	1.26 (0.72-2.28)	ABRO 100 mg				
2.96-1.89-4.73)	2.29 (1.41-3.72)	2.06 (1.12-3.67)	1.6 (0.97-2.75)	1.28 (0.65-2.45)	BARI 2 mg			
3.97 (2.54-6.31)	3.07 (1.88-4.99)	2.75 (1.54-4.94)	2.15 (1.31-3.6)	1.7 (0.89-3.28)	1.34 (0.74-2.42)	TRA 300 mg		
4.08 (2.48-6.69)	3.16 (1.86-5.29)	2.83 (1.5-5.26)	2.2 (1.28-3.89)	1.75 (0.87-3.53)	1.37 (0.92-2.06)	1.03 (0.55-1.9)	BARI 1 mg	
8.77 (6.81-11.17)	6.78 (5.02-8.99)	6.07 (3.89-9.14)	4.72 (3.49-6.64)	3.77 (2.21-6.23)	2.95 (1.92-4.51)	2.2 (1.47-3.3)	2.16 (1.35-3.4)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.6. Relative Risks for PP-NRS≥4-point improvement in Placebo-controlled Monotherapy Trials in Adults

UPA 30 mg								
1.02 (0.71-1.56)	DUP 300mg		_					
1.1 (0.78-1.56)	1.08 (0.65-1.69)	UPA 15 mg		_				
1.19 (0.72-2.1)	1.17 (0.67-2.04)	1.09 (0.63-1.97)	ABRO 200 mg		_			
1.68 (0.95-3.2)	1.65 (0.88-3.11)	1.53 (0.83-3.02)	1.4 (0.92-2.23)	ABRO 100 mg				
1.87 (1.03-3.59)	1.83 (0.96-3.53)	1.7 (0.91-3.39)	1.56 (0.79-3.16)	1.11 (0.52-2.36)	BARI 2 mg		_	
2.16 (1.14-4.58)	2.12 (1.06-4.43)	1.97 (1.01-4.28)	1.81 (0.87-3.95)	1.29 (0.58-2.94)	1.16 (0.52-2.68)	TRA 300		_
2.94 (1.5-6.18)	2.87 (1.4-6.03)	2.67 (1.32-5.78)	2.45 (1.14-5.38)	1.75 (0.77-4.02)	1.57 (0.88-2.86)	1.35 (0.55-3.29)	BARI 1 mg	
4.99 (3.5-6.85)	4.89 (3.22-6.72)	4.54 (2.99-6.58)	4.18 (2.54-6.22)	2.96 (1.66-4.83)	2.66 (1.47-4.44)	2.29 (1.17-4.08)	1.69 (0.86-3.11)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Network Meta-Analysis Results: Combination RCTs

<u>Choice of Model:</u> As noted above, we presented the results of the fixed-effect model for the combination therapy NMAs given the limited number of studies available for this network. Model fit information presented in Table D2.7 shows that the fixed effect models fit equally well or better compared to the random-effect model.

<u>NMA Results:</u> In general, the results for the combination therapy NMAs, provided more conservative estimates of the relative efficacies of these drugs versus placebo, although they followed a similar ranking order as the monotherapy NMAs. All interventions showed statistically significantly greater responses than placebo on all outcomes (<u>Table D2.9 – D2.13</u>). Table D2.8 presents the expected proportions of patients that achieved EASI 50,75 and 90 for each intervention.

Table D2.7. Model fit information on Combination therapy NMAs

Model Fit	Fixed effect Model	Random effect Model
EASI (multinomial model)		
Deviance Information Criterion (DIC)	79.8	79.6
Total Residual Deviance (vs. 60 data points)	64.9	63.3
IGA (binomial model)		
Deviance Information Criterion (DIC)	103.3	104.9
Total Residual Deviance (vs. 15 data points)	13.6	14.2
PP-NRS≥4-point improvement		
Deviance Information Criterion (DIC)	96.8	96.8
Total Residual Deviance (vs. 13 data points)	14	14

Table D2.8 NMA Results. Proportions of patients achieving EASI 50, 75, and 90 thresholds in Combination RCTs.

Treatment	EASI 50	EASI 75	EASI 90
		Median proportion (9	95% CrI)
Placebo	0.44 (0.41 – 0.47)	0.24 (0.22 – 0.27)	0.10 (0.09 – 0.12)
Dupilumab 300 mg Q2W	0.79 (0.73 – 0.84)	0.61 (0.54 – 0.68)	0.39 (0.32 – 0.46)
Abrocitinib 100 mg	0.75 (0.68 – 0.82)	0.56 (0.47 – 0.65)	0.34 (0.26 – 0.43)
Abrocitinib 200 mg	0.83 (0.77 – 0.88)	0.66 (0.58 – 0.74)	0.44 (0.35 – 0.54)
Baricitinib 2 mg	0.62 (0.52 -0.72)	0.41 (0.31 – 0.52)	0.21 (0.14 – 0.30)
Tralokinumab 300 mg	0.63 (0.53 – 0.72)	0.42 (0.33 – 0.52)	0.22 (0.15 – 0.30)
Upadacitinib 15 mg	0.83 (0.77 – 0.88)	0.67 (0.59 – 0.74)	0.44 (0.36 – 0.53)
Upadacitinib 30 mg	0.91 (0.87 – 0.94)	0.80 (0.73 – 0.85)	0.60 (0.52 – 0.69)

Table D2.9. Relative Risks for EASI 50 in Combination RCTs in Adults

UPA 30 mg		_					
1.10 (1.02-1.19)	ABRO 200 mg		_				
1.10 (1.05-1.16)	1.00 (0.91-1.09)	UPA 15 mg		_			
1.15 (1.07-1.25)	1.05 (0.98-1.12)	1.05 (0.96-1.14)	DUP 300mg		_		
1.21 (1.11-1.35)	1.10 (1.02-1.20)	1.10 (1.00-1.24)	1.05 (0.98-1.14)	ABRO 100 mg		_	
1.45 (1.27-1.71)	1.32 (1.14-1.57)	1.32 (1.15-1.57)	1.26 (1.09-1.49)	1.20 (1.02-1.43)	TRA 300 mg		
1.47 (1.27-1.76	1.33 (1.14-1.61)	1.33 (1.15-1.61)	1.27 (1.09-1.54)	1.21 (1.02-1.48)	1.01 (0.82-1.26)	BARI 2 mg	
2.09 (1.96-2.25)	1.91 (1.75-2.06)	1.91 (1.77-2.06)	1.82 (1.68-1.96)	1.73 (1.56-1.90)	1.44 (1.23-1.64)	1.43 (1.20-1.65)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.10. Relative Risks for EASI 75 in Combination RCTs in Adults

UPA 30 mg		_					
1.20 (1.05-1.38)	ABRO 200 mg		_				
1.20 (1.09-1.32)	1.00 (0.85-1.17)	UPA 15 mg		_			
1.30 (1.14-1.49)	1.09 (0.97-1.22)	1.09 (0.93-1.26)	DUP 300mg		_		
1.42 (1.21-1.69)	1.18 (1.04-1.36)	1.18 (0.99-1.43)	1.09 (0.96-1.25)	ABRO 100 mg		_	
1.90 (1.53-2.45)	1.58 (1.25-2.07)	1.58 (1.26-2.07)	1.46 (1.15-1.90)	1.34 (1.03-1.76)	TRA 300 mg		_
1.93 (1.52-2.55)	1.60 (1.25-2.15)	1.61 (1.26-2.15)	1.47 (1.15-1.97)	1.36 (1.04-1.84)	1.01 (0.73-1.42)	BARI 2 mg	
3.26 (2.91-3.65)	2.72 (2.35-3.11)	2.72 (2.39-3.09)	2.50 (2.21-2.83)	2.30 (1.94-2.68)	1.72 (1.35-2.11)	1.69 (1.30-2.12)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.11. Relative Risks for EASI 90 in Combination RCTs in Adults

UPA 30 mg		_					
1.36 (1.06-1.72)	ABRO 200 mg		_				
1.36 (1.17-1.60)	1.00 (0.77-1.29)	UPA 15 mg		_			
1.56 (1.25-1.94)	1.14 (0.95-1.37)	1.15 (0.90-1.45)	DUP 300mg		_		
1.77 (1.37-2.34)	1.30 (1.07-1.61)	1.30 (0.99-1.76)	1.14 (0.93-1.41)	ABRO 100 mg		_	
2.74 (1.98-3.97)	2.01 (1.41-2.98)	2.01 (1.43-2.96)	1.76 (1.24-2.57)	1.54 (1.05-2.31)	TRA 300 mg		_
2.80 (1.97-4.20)	2.05 (1.41-3.15)	2.06 (1.42-3.11)	1.79 (1.24-2.71)	1.58 (1.06-2.45)	1.02 (0.64- 1.66)	BARI 2 mg	
5.82 (4.90-6.94)	4.29 (3.43-5.27)	4.29 (3.52-5.21)	3.74 (3.09-4.51)	3.28 (2.55-4.16)	2.13 (1.51-2.88)	2.08 (1.43-2.88)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.12. Relative Risks for IGA response in Combination RCTs in Adults

UPA 30 mg		_					
1.26 (0.95-1.71)	ABRO 200 mg		_				
1.36 (1.15-1.63)	1.08 (0.76-1.52)	UPA 15 mg		_			
1.53 (1.15-2.04)	1.21 (1-1.47)	1.13 (0.8-1.57)	DUP 300mg		_		
1.7 (1.23-2.43)	1.35 (1.09-1.7)	1.25 (0.86-1.85)	1.11 (0.89-1.42)	ABRO 100 mg		_	
2.54 (1.62-4.08)	2.01 (1.23-3.36)	1.87 (1.13-3.12)	1.66 (1.02-2.78)	1.49 (0.87-2.59)	BARI 2 mg		_
2.83 (1.9-4.27)	2.24 (1.44-3.49)	2.08 (1.35-3.25)	1.85 (1.2-2.88)	1.66 (1.02-2.68)	1.11 (0.62-2.01)	TRA 300 mg	
4.61 (3.68-5.75)	3.65 (2.76-4.78)	3.39 (2.57-4.42)	3.02 (2.32-3.9)	2.71 (1.94-3.69)	1.82 (1.12-2.88)	1.63 (1.11-2.35)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

Table D2.13. Relative Risks for PP-NRS≥4-point improvement in Combination RCTs in Adults

UPA 30 mg		_					
1.16 (1.04-1.31)	ABRO 200 mg		_				
1.24 (1.01-1.56)	1.07 (0.85-1.37)	UPA 15 mg		_			
1.32 (1.1-1.6)	1.14 (0.91-1.41)	1.06 (0.89-1.25)	DUP 300mg		_		
1.69 (1.3-2.26)	1.46 (1.09-1.99)	1.36 (1.1-1.71)	1.28 (1.04-1.61)	ABRO 100 mg		_	
1.81 (1.29-2.7)	1.56 (1.08-2.35)	1.45 (0.98-2.24)	1.37 (0.94-2.09)	1.07 (0.69-1.71)	BARI 2 mg		
2.37 (1.75-3.29)	2.04 (1.47-2.89)	1.91 (1.34-2.74)	1.79 (1.28-2.55)	1.4 (0.93-2.1)	1.31 (0.8-2.1)	TRA 300 mg	
3.36 (2.86-3.95)	2.89 (2.39-3.48)	2.7 (2.13-3.35)	2.54 (2.09-3.07)	1.99 (1.48-2.6)	1.86 (1.23-2.66)	1.42 (1.03-1.91)	РВО

Each box represents the estimated risk ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in grey signify that the 95% credible interval does not contain one. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, PBO: placebo, TRA: tralokinumab, UPA: upadacitinib, Q2W: every two weeks

D3. Additional Clinical Evidence

This section starts by providing additional clinical evidence for patients with moderate-to-severe atopic dermatitis presented by drug. Evidence is first presented for adults and then for adolescents and children. Next, we provide additional clinical evidence for patients with mild-to-moderate atopic dermatitis in short-term placebo-controlled trials of adults and adolescents. At the time of this report, no long-term evidence for ruxolitinib cream was identified.

Moderate-to-Severe Population

Adults

<u>Abrocitinib</u>

Two placebo-controlled monotherapy trials of abrocitinib enrolled patients ≥12 years old (JADE MONO-1 & 2). ^{35,36} Results of the subgroup of patients ≥18 years old in these trials (74%-85% of the trial population) showed that 61%-65% of patients achieved EASI 75 with abrocitinib 200 mg, compared to 11%-12% in the placebo arms of those trials. ^{35,36} In this subgroup of patients, 39%-45% achieved EASI 75 with abrocitinib 100 mg. The percentages of patients in this subgroup that achieved IGA response with abrocitinib 200 mg were 38%-48%, 23%-30% with abrocitinib 100 mg, and 7%-10% with placebo.

As described in the report, one trial compared abrocitinib 200 mg, abrocitinib 100 mg, dupilumab, and placebo in adult patients also treated with topical corticosteroids (JADE COMPARE). ³⁷ While results at 12 weeks are described in the report, results at 16 weeks are presented here. The percentage of patients achieving EASI 75 with abrocitinib 200 mg was 71% compared with 60% with abrocitinib 100 mg, 66% with dupilumab, and 31% with placebo. ³⁷ The percentage of patients achieving IGA with abrocitinib 200 mg was 48% compared with 35% with abrocitinib 100 mg, 39% with dupilumab, and 13% with placebo. ³⁷ There were no statistically significant differences in EASI 75 and IGA response between the abrocitinib arms and dupilumab at 16 weeks. ³⁷

We identified one long-term trial of abrocitinib (JADE EXTEND).⁷⁶ JADE EXTEND is an ongoing, open-label extension study that evaluated continuous treatment with abrocitinib 100 mg or abrocitinib 200 mg in adults with moderate to severe atopic dermatitis who had participated in previous abrocitinib trials (JADE MONO-1, JADE MONO-2, JADE COMPARE). Results at week 48 showed the response rates on IGA (200 mg: 40%, 100 mg: 29%) and EASI 75 (200 mg: 62%, 100 mg: 46%) were sustained.

Baricitinib

We identified two long-term trials of baricitinib (BREEZE-AD3 and BREEZE-AD6). BREEZE-AD3 was a four-year blinded extension trial in which patients who achieved at least a partial response (IGA score of ≥2) at 16 weeks in originating trials were continued on baricitinib 2 mg for at least 52 weeks for a total of 68 weeks of continuous treatment. Week 68 results obtained from the manufacturer as academic-in-confidence suggest maintenance of EASI 75 and IGA response at 68 weeks. ^{43,44}

BREEZE-AD6 is an ongoing, 52-week, open-label, single-arm extension study that evaluated the long-term efficacy of continuous treatment with baricitinib 2 mg in adults with moderate to severe atopic dermatitis classified as non-responders or partial responders at week-16 in BREEZE-AD5 RCT.⁸² The use of topical corticosteroids was permitted after Week 16 in BREEZE-AD5 and throughout BREEZE-AD6.⁸² Results showed some improvement in EASI 75, IGA, and DLQI≤5 responses at 52 weeks (EASI: 49%, IGA:31%, DLQI≤5: 45%) compared to week 16 (EASI: 40%, IGA:27%, DLQI≤5: 45%).⁸²

Tralokinumab

In the two placebo-controlled monotherapy trials of tralokinumab (ECZTRA 1 and 2), patients were followed up for 52 weeks. ⁶³ After the 16-week initial treatment periods of ECZTRA 1 and 2, patients who achieved response (IGA score of 0 or 1 or EASI 75) were rerandomized to tralokinumab 300 every two weeks or every four weeks, or placebo for a 36-week maintenance period. Results are presented in Table D3.3 below.

In ECZTRA 3, the placebo-controlled trial of tralokinumab conducted in patients treated with topical corticosteroids, patients were followed up for 32 weeks.⁶⁴ Similar to ECZTRA 1 and 2, patients who achieved response (IGA score of 0 or 1 or EASI 75) at 16 weeks in ECZTRA 3 were rerandomized and followed up to the end of the study. Results are presented in Table D3.3 below.

In addition, we identified one 268-week ongoing, open-label, single-arm extension study of tralokinumab (ECZTEND).⁷⁸ ECZTEND evaluated the efficacy of continuous treatment with tralokinumab in adults with moderate to severe atopic dermatitis who had participated in previous tralokinumab trials (ECZTRA 1, 2,3, and 5). Interim results at week 56 showed the response rates on IGA (41.7%), EASI 50 (79.7%), EASI 75 (68.4%), and EASI 90 (51.1%) were sustained.⁷⁸ Safety events were consistent with what was observed in the originating trials.

Upadacitinib

Two placebo-controlled monotherapy trials of upadacitinib (MEASURE UP 1 &2) and one placebo-controlled combination trial (AD-UP) of upadacitinib enrolled patients ≥12 years old. ⁸¹ ⁸⁰ In the

monotherapy trials, the EASI and IGA responses in the subgroup of patients ≥18 years old were consistent with what was observed in the overall population. At week 16, 72%-79% of patients in the subgroup of patients ≥18 years old EASI 75 with upadacitinib 30 mg, compared to 13%-17% in the placebo arms of those trials.⁷⁹ In this subgroup of patients, 59%-69% achieved EASI 75 with upadacitinib 15 mg.⁷⁹ The percentages of patients in this subgroup that achieved IGA response with upadacitinib 30 mg were 51%-61%, 38%-50% with upadacitinib 15 mg, and 5%-9% with placebo.⁷⁹

Similarly, in the combination trial that compared upadacitinib to placebo in patients also treated with topical corticosteroids, the EASI and IGA responses in the subgroup of patients ≥18 years old were consistent with what was observed in the overall population.⁸¹ At week 16, the percentage of patients achieving EASI 75 in the subgroup of patients ≥18 years old with upadacitinib 30 mg was 77% compared with 66% with upadacitinib 15 mg and 26% with placebo.⁷⁹ IGA response was achieved by 58% of patients with upadacitinib 30 mg, 41% with upadacitinib 15 mg, and 11% with placebo.⁷⁹

Dupilumab

We identified two long-term Phase III trials of dupilumab (LIBERTY AD SOLO-CONTINUE and LIBERTY AD CHRONOS). In LIBERTY AD SOLO-CONTINUE, dupilumab was compared to placebo. LIBERTY AD CHRONO is a combination trial that compared dupilumab plus topical corticosteroid to topical corticosteroid alone. In both trials, patients who achieved response (IGA score of 0 or 1 or EASI 75) at 16 weeks in the originating trials were rerandomized to dupilumab 300 mg weekly, every two weeks, every four weeks, or every eight weeks, or placebo for 36 weeks. After completion, patients were followed up for up to 12 weeks or enrolled in an open-label extension (OLE). Results of LIBERTY AD SOLO-CONTINUE and LIBERTY AD CHRONOS are presented in Table D3.3.

Additional Outcome Tables

Table D3.1 Key Outcomes in Placebo-controlled Monotherapy Trials in Adults

Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP- NRS [†]	SCORAD [‡]
		Abroci	tinib		_			
LADE MONO	ABRO 200 mg		76.0	63.0	39.0	44.0	57.2	NR
JADE MONO-	ABRO 100 mg	12 weeks	58.0	40.0	19.0	24.0	38.0	NR
1,	PBO		22.0	12.0	5.0	8.0	15.0	NR
LADE MONO	ABRO 200 mg		79.9	61.0	37.7	38.1	55.3	NR
JADE MONO- 2 ^y	ABRO 100 mg	12 weeks	68.4	44.5	23.9	28.4	45.2	NR
Σ,	PBO		19.5	10.4	3.9	9.1	11.5	NR
6 1 1	ABRO 200 mg		79.2	64.6	52.1	43.8	63.6	-69.7
Gooderham 2019	ABRO 100 mg	16 weeks	55.6	40.7	25.9	29.6	50.0	-49.2
2019	PBO		26.9	15.4	9.6	5.8	25.5	-29.0
		Baricit	inib					
	BARI 2 mg		30.1	18.7	10.6	11.4	12.0	-21.5
BREEZE-AD 1	BARI 1 mg	16 weeks	25.0	17.3	8.7	11.8	10.5	-18.9
	PBO		15.3	8.8	4.8	4.8	7.2	-13.4
	BARI 2 mg		27.6	17.9	8.9	10.6	15.1	-27.8
BREEZE-AD 2	BARI 1 mg	16 weeks	18.4	12.8	6.4	8.8	6.0	-20.2
	PBO		12.3	6.1	2.5	4.5	4.7	-13.4
	BARI 2 mg		34.9	29.5	20.5	24.0	25.2	NR
BREEZE-AD 5	BARI 1 mg	16 weeks	19.7	12.9	7.5	12.9	15.9	NR
	PBO		12.9	8.2	3.4	5.4	5.7	NR
	T	Tralokinu		1		П	Г	
ECZTRA 1	TRA 300 mg	16 weeks	41.6	25.0	14.5	15.8	20.0	-25.2
	PBO		21.3	12.7	4.1	7.1	10.3	-14.7
ECZTRA 2	TRA 300 mg	16 weeks	49.9	33.2	18.3	22.2	25.0	-28.1
	PBO	11	20.4	11.4	5.5	10.9	9.5	-14.0
	LIDA 20	Upadac		00.0	66.0	62.0	60.0	ND
MEASURE UP	UPA 30 mg	16 weeks	NR	80.0	66.0	62.0	60.0	NR
1 ^y	UPA 15 mg PBO	16 weeks	NR NR	70.0 16.0	53.0 8.0	48.0 8.0	52.0 12.0	NR NR
	UPA 30 mg		NR	73.0	58.0	52.0	60.0	NR
MEASURE UP	UPA 15 mg	16 weeks	NR	60.0	42.0	39.0	42.0	NR
2 ^y	PBO	10 WEEKS	NR	13.0	5.0	5.0	9.0	NR
	UPA 30 mg		NR	71	60.6	NR	55.3	NR
Heads Up	DUP 300 mg	16 weeks		61.1	38.7	NR	35.7	NR
Phase II	UPA 30 mg		83.3	69.0	50.0	50.0	52.8	-60.4
Guttmann-	UPA 15 mg	16 weeks	71.4	52.4	26.2	31.0	59.4	-46.9
Yassky 2020	PBO		22.0	9.8	2.4	2.4	5.7	-12.4
		Dupilur	mab [¶]					
LIBERTY AD	DUP 300 mg Q2W	16	69.0	51.0	36.0	38.0	41.0	-57.7
SOLO 1	PBO	16 weeks	25.0	15.0	8.0	10.0	12.0	-29.0
	DUP 300 mg Q2W	16 weeks	65.0	44.0	30.0	36.0	36.0	-51.1

Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP- NRS [†]	SCORAD [‡]
LIBERTY AD SOLO 2	PBO		22.0	12.0	7.0	8.0	10.0	-19.7
TI : 2046	DUP 300 mg Q2W	16 wooks	78.0	52.8	29.8	30.0	NR	-51.2
Thaci 2016	PBO	16 weeks	30.0	11.09	3.5	2.0	NR	-13.8

All values in the table are percentages. BARI 4 mg, DUP 300 mg QW, DUP 200 mg, and DUP 100 mg doses were excluded from the network meta-analyses. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, TRA: tralokinumab, UPA: upadacitinib. [†]PP-NRS ≥4, [‡]LSM change from baseline, *reported adjusted mean change from baseline in SCORAD, [¶]reported LSM percentage change from baseline in SCORAD, ^Vdata were from patients ages 12 and older.

Table D3.2. Key Outcomes in Placebo-controlled Combination Trials in Adults (Short-term)

Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP- NRS [†]	SCORAD [‡]
			Abroo	itinib				
	ABRO 200 mg + TCS		87.3	71	48.9	47.5	62.8	NR
JADE	ABRO 100 mg + TCS	16 weeks	81.2	60.3	38	34.8	47.0	NR
COMPARE	DUP 300 mg + TCS		84.1	65.5	38.8	38.8	57.1	NR
	PBO + TCS		57.3	30.6	11.3	12.9	28.7	NR
	•		Baric	itinib	•			•
BREEZE-	BARI 2 mg + TCS	16 weeks	64.2	43.1	16.5	23.9	38.1	-29.9
AD7	PBO + TCS	10 weeks	41.3	22.9	13.8	14.7	20.2	-21.4
Guttman-	BARI 2 mg + TCS		56.8	29.7	18.9	21.6	NR	-23.87
Yassky 2018	PBO + TCS	16 weeks	36.7	20.4	6.1	8.2	NR	-11.89
			Traloki	numab				
ECZTRA 3	TRA 300 mg + TCS	16 weeks	79.4	56.0	32.9	38.9	45.4	-37.7
	PBO + TCS		57.9	35.7	21.4	26.2	34.1	-26.8
			Upada	citinib	•			•
	UPA 30 mg + TCS		NR	77.0	NR	59.0	64.0	NR
AD-UP§	UPA 15 mg +TCS	16 weeks	NR	65.0	NR	40.0	52.0	NR
	PBO + TCS		NR	26.0	NR	11.0	15.0	NR
			Dupil	umab				
LIBERTY AD	DUP 300 mg + TCS	16 weeks	80.0	69.0	40.0	39.0	59.0	-62.1
CHRONOS	PBO + TCS		37.0	23.0	11.0	12.0	20.0	-31.8

All values in the table are percentages. BARI 4 mg, DUP 300 mg QW, DUP 200 mg, and DUP 100 mg doses were excluded from the NMA. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, TRA: tralokinumab, TCS: topical corticosteroids, UPA: upadacitinib. [†]PP-NRS ≥4, [‡]LSM change from baseline, *reported adjusted mean change from baseline in SCORAD, [§]results are from patients ages 12 and older, [¶]reported LSM percentage change from baseline in SCORAD.

Table D3.3. Key Outcomes in Long-term Comparative Trials

Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP- NRS [†]	SCORAD [‡]
			Tralokinu	mab				
	TRA 300 mg Q2W		NR	59.6	NR	51.3	NR	NR
ECZTRA 1	TRA 300 mg Q4W	52 weeks§	NR	49.1	NR	38.9	NR	NR
	PBO		NR	33.3	NR	47.4	NR	NR
	TRA 300 mg Q2W		NR	55.8	NR	59.3	NR	NR
ECZTRA 2	TRA 300 mg Q4W	52 weeks§	NR	51.4	NR	44.9	NR	NR
	PBO		NR	21.4	NR	25	NR	NR
	TRA 300 mg Q2W + TCS (non-responders)		NR	55.8	NR	30.5	NR	NR
ECZTRA 3	TRA 300 mg Q2W +TCS (TRA responders)	32 weeks	98.6	92.5	72.5	89.6	NR	NR
	TRA 300 mg Q4W + TCS (TRA responders)		91.3	90.8	63.8	77.6	NR	NR
			Dupilum	ab				
AD SOLO 1- CONTINUE	DUP 300 mg Q2W or QW	36 weeks	39.8	30.4	18.2	14.3	12.8	-2.7
CONTINUE	PBO		73.4	71.6	64.7	54.0	49.1	-4.3
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	52 weeks	79	65	51	36	51	-66.2
CHRONOS	PBO + TCS		30	22	16	13	13	-34.1

All values in the table are percentages. Includes trials only in adults 18 and older. DUP 300 mg QW + TCS dose was excluded from the table. DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, TCS: topical corticosteroids, TRA: tralokinumab. [†]PP-NRS ≥4, [‡]LSM change from baseline, [¶]reported LSM percentage change from baseline in SCORAD.

Harms

Summaries of the harms are provided in <u>Section 3.2 of the Report</u>. Tables presenting key harms from the short-term RCTs are presented in Tables 3.4 and 3.5. For responders in re-randomized long-term monotherapy trials (<u>Table D3.6</u>), harms were uncommon though slightly more patients on active treatment discontinued therapy due to side effects. Additional reports of conjunctivitis and herpetic infections were similar among those receiving active therapy or placebo. For patients in long-term combination trials (<u>Table D3.7</u>), harms leading to discontinuation were uncommon and similar or slightly higher for patients receiving placebo. Other adverse effects were also similar among treatment arms.

Table D3.4. Key Harms in Placebo-controlled Monotherapy Trials of Adults (Short-term)

Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AE	SAE	Conjunctivitis	Nausea	Herpetic Infection
				Abrocitini				l	L
	ABRO 200 mg		78	NR	6	3	2.6	20.0	3.9 [¥]
JADE MONO- 1 [§]	ABRO 100 mg	12 weeks	69	NR	6	3	2.6	9.0	4.5 [¥]
	PBO]	57	NR	9	4	0	3.0	1.3 [¥]
LADE MONO	ABRO 200 mg		NR	65.8	3.2	1.3	NR	14.2	1.3#
JADE MONO- 2 [§]	ABRO 100 mg	12 weeks	NR	62.7	3.8	3.2	NR	7.6	1.3#
	PBO		NR	53.8	12.8	1.3	NR	2.6	1.3#
6 1 1	ABRO 200 mg		NR			3.6	NR	14.5	0**
Gooderham 2019	ABRO 100 mg	16 weeks	NR	68.9	16.5	5.4	NR	1.8	3.6**
	PBO		NR			3.6	NR	1.8	2.8**
	1	I.		Baricitini	b		1		l.
	BARI 2 mg		NR	NR	0.8	0	1.6*	NR	3.3 ^{††}
BREEZE-AD1	BARI 1 mg	16 weeks	NR	NR	1.6	0.8	0.8*	NR	5.5 ^{††}
	PBO		NR	NR	1.6	2.4	1.6*	NR	1.2 ^{††}
	BARI 2 mg		NR	NR	2.4	2.4	1.6*	NR	5.7 ^{††}
BREEZE-AD2	BARI 1 mg	16 weeks	NR	NR	5.6	7.3	4.8*	NR	4.8 ^{††}
	PBO		NR	NR	0.8	3.7	0.8*	NR	4.5 ^{††}
	BARI 2 mg		NR	NR	2.8	1.4	NR	3.4	1.4**
BREEZE-AD5	BARI 1 mg	16 weeks	NR	NR	2.7	0.7	NR	2.0	2.7 ^{‡‡}
	PBO		NR _	NR	2.7	2.1	NR	2.1	0.6 ^{‡‡}
	T	T		alokinum			+	T=	00
ECZTRA 1	TRA 300 mg	16 weeks	76.4	NR	3.3	3.8	7.1 [†]	NR	0.5 ^{¶¶} 1 ^{¶¶}
	PBO TRA 300 mg		77 61.5	NR NR	4.1 1.5	4.1 1.7	2 [†] 3 [†]	NR NR	0.3 ^{¶¶}
ECZTRA 2	PBO	16 weeks	66	NR	1.5	2.5	1.5 [†]	NR NR	2.5 ^{¶¶}
	1 1 00			padacitin		۷.5	1.5	1417	2.3
	UPA 30 mg		NR	NR	NR	2.8	NR		
MEASURE UP	UPA 15 mg	16 weeks	NR	NR	NR	2.1	NR	1	4 ^{¥¥}
1 §	PBO	20	NR	NR	NR	2.8	NR		O ^{¥¥}
	UPA 30 mg		NR	NR	NR	2.5	NR	3.5	2 ^{¥¥}
MEASURE UP	UPA 15 mg	16 weeks	NR	NR	NR	1.8	NR	1	1 ^{¥¥}
2 [§]	РВО	1	NR	NR	NR	2.9	NR	1	2 ^{¥¥}
Phase II	UPA 30 mg		76	NR	4.8	0	NR	7.1	O _ž
Guttmann-	UPA 15 mg	16 weeks	63	NR	7.5	2.4	NR	2.5	O _ž
Yassky 2020	PBO		79	NR	9.5	2.5	NR	1.4	O _{žž}
				Dupiluma	b				

Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AE	SAE	Conjunctivitis	Nausea	Herpetic Infection
LIBERTY AD	DUP 300		73	NR	2	3	4.8 [‡]		7##
SOLO 1	mg Q2W	16 weeks	/3	IVIX		,			,
30101	PBO		65	NR	1	5	0.9 [‡]	NR	4##
LIBERTY AD SOLO 2	DUP 300 mg Q2W	16 weeks	65	NR	1	13	3.8 [‡]	INK	4##
30L0 2	PBO		72	NR	2	2	0.4 [‡]		3##
	DUP 300		NR	78	6	NR	5¶	2	8 [¥]
Thaci 2016	mg Q2W	16 weeks	INK	/8	O	INK	"כ		0
	PBO		NR	80	5	NR	3 [¶]	7	2 [¥]

All values in the table are percentages. AE: adverse event, D/C: discontinuation, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, SAE: serious adverse event, TEAE: treatment-emergent adverse event.
§results are from patients ages 12 and older, *conjunctivitis/keratitis, †conjunctivitis, conjunctivitis bacterial, conjunctivitis viral and conjunctivitis allergic, †conjunctivitis of unspecified cause, allergic, bacterial and viral conjunctivitis, and atopic keratoconjunctivitis, *conjunctival infections, irritations, and inflammation, *oral herpes, herpes simplex, eczema herpeticum, herpes virus infection, and herpes zoster, *eczema herpeticum and treatment-emergent herpes simplex, †herpes simplex, *herpes zoster and herpes simplex, *eczema herpeticum, *herpes zoster, *herpes viral infection, including oral herpes, herpes simplex, eczema herpeticum, herpes virus infection, herpes zoster, ophthalmic herpes simplex, genital herpes, herpes ophthalmic, and herpes simplex otitis externa.

Table D3.5. Key Harms in Placebo-controlled Combination Trials of Adults (Short-term)

Trial	Arm	Timepoint	Any AEs	TEAEs	D/C due to AEs/TEAEs	SAE	Conjunctivitis	Nausea	Herpetic Infection			
				Al	rocitinib							
	ABRO 200 mg		61.9	NR	4.4	0.9	1.3	11.1	1.8			
JADE	ABRO 100 mg	16 weeks	50.8	NR	2.5	2.5	0.8	4.2	0.8			
COMPARE	DUP 300 mg		50	NR	3.3	0.8	6.2	2.9	0			
	РВО		53.4	NR	3.8	3.8	2.3	1.5	0			
			Baricitinib									
BREEZE-	BARI 2 mg + TCS	16 weeks	NR	56	0	1.8	NR	NR	6.4			
AD7	PBO + TCS		NR	38	0.9	3.7	NR	NR	3.7			
Guttman- Yassky	BARI 2 mg + TCS	16 weeks	NR	45.9	2.7	NR	0	NR	0			
2018	PBO + TCS		NR	49	10.2	NR	2	NR	0			
				Tra	okinumab							
ECZTRA 3	TRA 300 mg + TCS	16 weeks	71.4	NR	2.4	0.8	11.1	0	5 [‡]			
	PBO + TCS		66.7	NR	0.8	3.2	3.2	0.79	6 [‡]			
				Up	adacitinib							
	UPA 30 mg + TCS		NR	NR	0	1.3	NR	NR	1.3			
AD-UP	UPA 15 mg + TCS	16 weeks	NR	NR	0	2.3	NR	NR	1			
Allerations	PBO + TCS		NR	NR	0	3	NR NR	NR	NR			

All values in the table are percentages. No short-term safety data available for BREEZE-AD7, Guttman-Yassky 2018, AD-UP, and LIBERTY AD CHRONOS. ABRO: abrocitinib, AE: adverse event, BARI: baricitinib, D/C: discontinuation, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, SAE: serious adverse event, TCS: topical corticosteroids, TEAE: treatment-emergent adverse event, TRA: tralokinumab, UPA: upadacitinib. ‡eczema herpeticum.

Table D3.6. Key Harms in Placebo-controlled Monotherapy Trials of Adults (Long-term)

Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AE	SAE	Conjunctivitis	Nausea	Herpetic Infection
				Bariciti	inib				
BREEZE- AD3	BARI 2 mg	NR	NR	NR	NR	NR	NR	NR	NR
				Tralokini	umab				
	TRA 300 mg Q2W		79.4	NR	1.5	1.5	8.8*	NR	0.0 [‡]
ECZTRA 1	TRA 300 mg Q4W	36 weeks	69.7	NR	1.3	3.9	6.6*	NR	0.0 [‡]
	PBO]	71.4	NR	0.0	0.0	5.7*	NR	0.0 [‡]
	TRA 300 mg Q2W		68.1	NR	2.2	0.0	8.8*	NR	1.1 [‡]
ECZTRA 2	TRA 300 mg Q4W	36 weeks	62.9	NR	1.1	3.4	5.6*	NR	0.0 [‡]
	PBO		69.6	NR	0.0	0.0	6.5*	NR	0.0 [‡]
				Dupilur	nab		·		
AD SOLO 1-	DUP 300 mg Q2W or QW	36 weeks	NR	81.7	3.7	NR	4.9 [†]	NR	6.1 [¶]
CONTINUE	PBO		NR	70.7	0.0	NR	5.4 [†]	NR	6.6 [¶]

All values in the table are percentages. Includes trials only in adults 18 and older. Dupilumab 300 mg Q8W and Q4W doses were not included in the table. AE: adverse event, BARI: baricitinib, D/C: discontinuation, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, SAE: serious adverse event, TEAE: treatment-emergent adverse event, TRA: tralokinumab. *conjunctivitis bacterial, conjunctivitis viral and conjunctivitis allergic, †conjunctivitis, conjunctivitis bacterial, conjunctivitis viral, conjunctivitis allergic, and atopic keratoconjunctivitis, †eczema herpeticum, ¶herpes simplex virus infection, oral herpes infection, ophthalmic herpes infection.

Table D3.7. Key Harms in Placebo-controlled Combination Trials of Adults (Long-term)

Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AEs/TEAEs	SAE	Conjunctivitis	Nausea	Herpeti c Infectio n
	TRA Q2W + TCS (TRA non- responders)		65.3	NR	1.1	2.1	4.2*	3.2	5 [‡]
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	16-32 weeks	69.6	NR	0	4.3	4.3*	4.3	4 [‡]
	TRA Q4W +TCS (TRA responders)		59.4	NR	1.4	0	1.4*	5.8	6 [‡]
	PBO Q2W + TCS (PBO responders)		63.4	NR	2.4	2.4	2.4*	0	2 [‡]
LIBERTY AD	DUP 300 mg Q2W + TCS	52 2eeks	88	NR	2	4	14 [†]	NR	7 [¶]
CHRONOS	PBO + TCS		84	NR	8	5	8 [†]	NR	8 [¶]

All values in the table are percentages. AE: adverse event, D/C: discontinuation, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, SAE: serious adverse event, TEAE: treatment-emergent adverse event, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib. *conjunctivitis, conjunctivitis allergic, and conjunctivitis viral, conjunctivitis allergic, †conjunctivitis bacterial, atopic keratoconjunctivitis, and conjunctivitis, †oral herpes and eczema herpeticum, oral herpes, herpes simplex, herpes virus infection, herpes zoster, eczema herpeticum, genital herpes, ¶herpes ophthalmic, ophthalmic herpes simplex, and ophthalmic herpes zoster.

Children and Adolescents

Additional clinical evidence for children and adolescents are presented below. For adolescents, our literature search identified trials for abrocitinib, upadacitinib, and dupilumab. Only trials of dupilumab were identified for children, and all of these included topical medications in all groups. Our literature search did not identify any baricitinib or tralokinumab trials in children or adolescents.

Abrocitinib

As noted in Section 3.2 of the Report, trials of abrocitinib included adolescents and adults.

Though two placebo-controlled monotherapy trials of abrocitinib enrolled patients \geq 12 years old (JADE MONO-1 &2), a small fraction of the patients in these trials were \geq 12-17 years old (15%-26%).^{35,36} One trial of abrocitinib solely enrolled patients 12-17 years old and included use of

topical medications in all arms (JADE TEEN). ^{39,41,77} While results of these trials in adolescents are briefly described in the Report, additional results and a table of key results are presented here.

In the two placebo-controlled monotherapy trials that enrolled patients ≥12 years old (JADE MONO-1 &2), 55%-60% of patients <18 years old achieved EASI 75, compared to 0%-13% in the placebo arms of those trials. ^{35,36} In this subgroup of patients, 44% achieved EASI 75 with abrocitinib 100 mg. The percentages of patients achieving IGA response, defined as an IGA score of 0 or 1 and an improvement of 2 points or more from baseline, with abrocitinib 200 mg were 27%-40%, 13%-27% with abrocitinib 100 mg, and 0%-13% with placebo.

In the placebo-controlled combination trial that solely enrolled adolescents (JADE TEEN), more patients in the abrocitinib arms achieved EASI 75 and IGA response at 12 weeks compared to the placebo arm (see Table D3.9).^{39,77}

At the time of this Report, no long-term data for abrocitinib in adolescents were identified.

Upadacitinib

As noted in Section 3.2 of the Report, trials of upadacitinib included adolescents and adults.

Two placebo-controlled monotherapy trials (MEASURE UP 1 &2) and one placebo-controlled combination trial (AD-UP) of upadacitinib enrolled patients \geq 12 years old; however, few patients in these trials were \geq 12-17 years old (12%-15%). 81 80 While results of these trials in adolescents are briefly described in the Report, additional results and a table of key results are presented here.

In the two placebo-controlled monotherapy trials that enrolled patients ≥12 years old (MEASURE UP 1 &2), 75%-83% of patients <18 years old achieved EASI 75 on upadacitinib 30 mg, compared to 8%-13% in the placebo arms of those trials. ⁷⁹ In this subgroup of patients, 67%-71% achieved EASI 75 with upadacitinib 15 mg. The percentages of patients achieving IGA response, defined as an IGA score of 0 or 1 and an improvement of 2 points or more from baseline, with upadacitinib 30 mg were 63%-69%, 38%-42% with upadacitinib 15 mg, and 3%-8% with placebo (See Table D3.8). ⁷⁹

In the combination trial that compared upadacitinib to placebo in patients also treated with topical corticosteroids (AD-UP), 77% of patients <18 years old achieved EASI 75 on upadacitinib 30 mg, compared to 30% in the placebo arms. ⁷⁹ IGA response was achieved by 65% of patients with upadacitinib 30 mg, 31% with upadacitinib 15 mg, and 8% with placebo (See Table D3.9). ⁷⁹

At the time of this report, no long-term data for upadacitinib in adolescents were identified.

Dupilumab

We identified one OLE of dupilumab in a subgroup in children with severe atopic dermatitis, ¹³⁷ and one OLE of dupilumab in children with severe atopic dermatitis and adolescents with moderate-to-severe atopic dermatitis. ^{58,59} At the time of this report, the OLE of dupilumab have been published. Results for the phase IIa OLE were obtained from a conference abstract and clinicaltrials.gov. Results are presented in Table D3.9.

Additional Tables of Outcomes

Table D3.8. Key Outcomes in Placebo-controlled Monotherapy Trials in Adolescents (Short-term)

Population of Interest	Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP- NRS [†]	SCORAD [‡]	
				Abroc	itinib					
		ABRO 200			54.5		27.3			
	JADE	mg			34.3		27.3			
	MONO-1*	ABRO 100	12 weeks		44.1		26.5			
	IVIONO-1	mg			77.1		20.5			
		PBO			12.5		12.5			
		ABRO 200			60.0		40.0			
	JADE	mg			00.0		40.0			
	MONO-2*	ABRO 100	12 weeks		43.8		12.5			
	Wiolto 2	mg			45.0					
	PBO 0.0 0.0									
12-17				Upada	citinib					
years	MEASURE	UPA 30 mg					69.0	54.8	NR	
years	UP 1*	UPA 15 mg	16 weeks				38.1	45.0	NR	
	01 1	PBO					7.5	15.4	NR	
	MEASURE	UPA 30 mg					62.5	50.0	NR	
	UP 2*	UPA 15 mg	16 weeks				42.4	33.3	NR	
	OF Z	PBO					2.8	2.8	NR	
				Dupilı	umab					
		DUP								
		200/300		61	41.5	23.2	24.4	36.6	-51.6 [¶]	
	LIBERTY	mg Q2W	16 weeks							
	AD ADOL	DUP 300	16 weeks	54.8	38.1	19.0	17.9	26.5	-47.5 [¶]	
		mg Q4W		54.0		15.0		20.5	_	
		PBO		12.9	8.2	2.4	2.4	4.8	-17.6 [¶]	

All values in the table are percentages. No monotherapy trials were conducted in the children population. ABRO: abrocitinib, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, UPA: upadacitinib. *subgroup of the trial population, [†]PP-NRS ≥4, [‡]mean change from baseline, [¶]LSM percentage change from baseline.

Table D3.9. Key Outcomes in Placebo-controlled Combination Trials of Children and Adolescents (Short- and Long-term)

Population	Trial	Arm	Timepoint	EASI	EASI	EASI	IGA	PP-	SCORAD‡
of Interest			Du	50 pilumal	75 h	90		NRS†	
	LIDEDTYAD	DUP 300 mg Q4W + TCS	Du	91	69.7	41.8	32.8	50.8	-62.4 [¶]
	LIBERTY AD PEDS	DUP 100/200 mg Q2W + TCS	16 weeks	82.8	67.2	30.3	29.5	58.3	-60.2 [¶]
		PBO + TCS		43.1	26.8	7.3	11.4	12.3	-29.8 [¶]
		DUP 4 mg/kg + TCS	16 wooks	93	73	33	40	69	-62
6-11 years	LIBERTY AD	DUP 2 mg/kg + TCS	16 weeks	94	59	41	35	53	-61
	PED OLE*	DUP 4 mg/kg + TCS	52	94	75	44	25	69	-67
		DUP 2 mg/kg + TCS	52 weeks	94	94	71	76	65	-79
	Phase 2a AD-	DUP 4 mg/kg + TCS	42	NR	NR	NR	21.1	NR	-46.9
	1412*	DUP 2 mg/kg + TCS	12 weeks	NR	NR	NR	16.7	NR	-57.5
			Ab	rocitinil	b				
		ABRO 200 mg + TCS			72		46.2	55.4	
	JADE TEEN	ABRO 100 mg + TCS	12 weeks		68.5		41.6	52.6	
		PBO +TCS			41.5		24.5	29.8	
			Upa	dacitin	ib				
		UPA 30 mg + TCS		NR	75.7	NR	64.9	54.5	NR
12 17 years	AD-UP	UPA 15 mg + TCS	16 weeks	NR	56.4	NR	30.8	41.7	NR
12-17 years		PBO + TCS		NR	30.0	NR	7.5	13.2	NR
			Du	pilumal	b				
			ı	Baseline	weight	<60 kg			
	LIBERTY AD	Overall	52 weeks	NR	86	NR	36.5	NR	NR
	PED-OLE*		·	Baseline	weight	≥60 kg	I		I
		Overall	52 weeks	NR	76.5	NR	49	NR	NR
	Phase 2a AD-	DUP 4 mg/kg + TCS	12 wooks	NR	NR	NR	35	NR	-43.4
	1412*	DUP 2 mg/kg + TCS	12 weeks	NR	NR	NR	10	NR	-47.7

All values in the table are percentages. ABRO: abrocitinib, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, TCS: topical corticosteroids. *subgroup of the trial population, [†]PP-NRS ≥4, [‡]mean percentage change from baseline, [¶]LSM percentage change from baseline.

Harms

Table D3.10. Key Harms in Placebo-controlled Monotherapy Trials of Adolescents

Population of Interest	Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AE	SAE	Conjunctivitis	Nausea	Herpetic Infection
					Dupil	umab				
12.17	LIBERTY AD	DUP 200/300 mg Q2W	16 waska	NR	72	O [†]	O [†]	9.8	NR	1.2¶
12-17 years	ADOL	DUP 300 mg Q4W	16 weeks	NR	63.9	0 [†]	O [†]	10.8	NR	4.8 [¶]
		PBO		NR	69.4	1.2 [†]	1.2 [†]	4.7	NR	3.5 [¶]

All values in the table are percentages. No placebo-controlled trials were conducted in the children population. There were no available safety data for adolescent subgroups in JADE MONO-1, JADE MONO-2, MEASURE UP 1, and MEASURE UP 2. ABRO: Abrocitinib, AE: adverse event, D/C: discontinuation, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, SAE: serious adverse event, TEAE: treatment-emergent adverse event, UPA: upadacitinib. *subgroup of the trial population, *based on TEAE, *herpes viral infection.

Table D3.11. Key Harms in Placebo-controlled Combination Trials of Children and Adolescents

Population of Interest	Trial	Arm	Timepoint	Any AEs	TEAEs	D/C Due to AE	SAE	Conjunctivitis	Nausea	Herpetic Infection		
	Dupilumab											
		DUP 300 mg Q4W + TCS		NR	65	O [†]	1.7 [†]	6.7 [‡]	NR	1.7¶		
	LIBERTY AD PEDS	DUP 100/200 mg Q2W + TCS	16 weeks	NR	67.2	1.6 [†]	O [†]	14.8 [‡]	NR	3.3 [¶]		
6-11 years		PBO +TCS		NR	73.3	1.7 [†]	1.7 [†]	4.2 [‡]	NR	5 [¶]		
	LIBERTY AD PED-	DUP 4 mg/kg + TCS	F2 wooks	NR	100	O [†]	19 [†]	31	NR	50#		
	OLE*	DUP 2 mg/kg + TCS	52 weeks	NR	94	O [†]	12 [†]	5	NR	12		
	Phase 2a AD-1412*	DUP 4 mg/kg + TCS	20 weeks	NR	NR	NR	10.53	5.26	10.53	5.26 [§]		
F	Phase 2d AD-1412	DUP 2 mg/kg + TCS	20 weeks	NR	NR	NR	0	0	0	5.56 [§]		
	Abrocitinib											
		ABRO 200 mg + TCS		NR	62.8	2.1	NR	NR	NR	NR		
	JADE TEEN	ABRO 100 mg + TCS	12 weeks	NR	56.8	1.1	NR	NR	NR	NR		
		PBO +TCS		NR	52.1	2.1	NR	NR	NR	NR		
12-17 years				[Dupilumab							
12-17 years	LIBERTY AD PED-	DUP 200/300 mg Q2W	52 weeks	NR	74.4	0.9 [†]	0.9 [†]	8.7 [¥]	NR	NR		
	OLE*	DUP 300 mg Q4W		NR	72.2	O [†]	3.8 [†]		NR	NR		
	Dhaca 2a AD 1412*	DUP 4 mg/kg + TCS	20 wooks	NR	NR	NR	5	0	0	5 [§]		
	Phase 2a AD-1412*	DUP 2 mg/kg + TCS	20 weeks	NR	NR	NR	5	0	0	0 [§]		

All values in the table are percentages. ABRO: abrocitinib, AE: adverse event, D/C: discontinuation, DUP: dupilumab, mg: milligram, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, SAE: serious adverse event, TCS: topical corticosteroids, TEAE: treatment-emergent adverse event. *subgroup of the trial population, *based on TEAE, *conjunctivitis cluster, *herpes viral infection, #herpes viral infection and herpes simplex, \$herpes viral infection, herpes simplex, and oral herpes, *treatment-emergent narrow conjunctivitis.

Mild-to-Moderate Population

Ruxolitinib Cream

We identified two 52-week long-term trials of ruxolitinib conducted in patients with atopic dermatitis who had participated in TRuE-AD1 and TRuE-AD2 studies.⁷³ Patients were followed up for 8-weeks in TRuE-AD1 and TRuE-AD2 trials and followed up for additional 44 weeks in the extension studies.⁷³ Patients on ruxolitinib cream in the originating trials remained on their regimen during the long-term extension period, while patients in the vehicle (placebo) arms were re-randomized 1:1 to ruxolitinib cream 1.75% or ruxolitinib cream 1.75%.⁷³ During the extension studies, patients were instructed to stop treatment three days after clearance of atopic dermatitis lesions and restart treatment at the first sign of recurrence. At week 52, IGA response was achieved by 72%-80% and 60%-77% of patients on 1.5% and 0.75% ruxolitinib cream.⁷³

Additional Table of Outcomes

While most results for the ruxolitinib cream trials are described in <u>Section 3.3 of the Report</u>, a table of key results is presented here.

Table D3.12. Key Outcomes for Ruxolitinib Cream^{86,87,97}

Trial	Arm	Timepoint	EASI 50	EASI 75	EASI 90	IGA	PP-NRS†	SCORAD [‡]				
			Ruxolitin	ib Cream								
	RUX 1.5% NR 62.1 44.3 53.8 52.2 NR											
TRuE AD 1	RUX 0.75%	8 weeks	NR	56.0	38.1	50.0	40.4	NR				
	PBO		NR	24.6	9.5	15.1	15.4	NR				
	RUX 1.5%		NR	61.8	43.4	51.3	50.7	-67.3**				
TRuE AD 2	RUX 0.75%	8 weeks	NR	51.5	35.1	39.0	42.7	-62.9**				
	PBO		NR	14.4	4.2	7.6	16.3	-30.4**				
Di II	RUX 1.5%		NR	56.0	26.0	38.0	62.5	NR				
Phase II Kim 2020*	TRI 0.1%	4 weeks	NR	47.1	13.7	25.5	19.4	NR				
KIIII ZUZU	PBO		NR	17.3	5.8	7.7	11.1	NR				

All values in the table are percentages. RUX: ruxolitinib cream, TRI: topical triamcinolone acetonide, NR: not reported, PBO: placebo.

^{*}Results from additional RUX arms are presented in Evidence Tables G1.48-1.64.

^{**}Results from a pooled analysis of TRuE AD 1 and 2.

Harms

Summaries of the harms are provided in <u>Section 3.3 of the Report</u>. A table presenting key harms from the trials are presented here.

Table D3.13. Key Harms for Ruxolitinib Cream^{86,87,97}

Trial	Arm	Timepoint	Any TEAE	Study Drug- Related TEAE	Serious TEAE	D/C Due to TEAEs	Application Site Burning	Application Site Pruritis
			Ruxoliti	inib Cream (short	:-term)			
	RUX 1.5%		28.9	5.5	0.8	1.2	0.8	0.0
TRuE AD 1	RUX 0.75%	8 weeks	29.4	6.0	0.4	1.2	0.0	0.8
	PBO		34.9	12.7	1.6	4.0	1.6	1.6
	RUX 1.5%		23.6	4.5	0.4	0.0	0.8	0
TRuE AD 2	RUX 0.75%	8 weeks	29.4	3.2	1.2	0.4	0.8	0.8
	PBO		32.3	9.7	0.0	2.4	6.5	3.2
Dhasa II	RUX 1.5%		24	6.0	NR	0.0	NR	NR
Phase II Kim 2020*	TAC 0.1%	8 weeks	33.3	2.0	NR	2.0	NR	NR
KIIII 2020	PBO		32.7	9.6	NR	1.9	NR	NR
			Ruxolit	inib Cream (Long	-term)			
	RUX 1.5%		53.8	2.9	1.3	0	2.1 - 2.2/100 p	atient-years**
TRuE AD 1 & 2	RUX 0.75%	53a alsa	60.1	4.7	2.3	2.1	3.5 - 4.7/100 p	atient-years**
(Pooled)	PBO to RUX 1.5%	52 weeks	57.6	6.1	1.0	0	NR	NR
	PBO to RUX 0.75%		53.5	2.0	5.0	0	NR	NR

All values in the table are percentages. D/C: discontinuation, NR: not reported, PBO: vehicle (placebo), RUX: ruxolitinib cream, TAC: topical triamcinolone acetonide, TEAE: treatment-emergent adverse event.

^{*}The incidences of adverse events at four weeks were not reported.

^{**}Presented as application site reactions

D4. Ongoing Studies

Figure D4.1. Ongoing Studies

Title / Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Estimated Completion Dates
	1	1	Abrocitinib		•
Study of Abrocitinib Compared	Phase IIIb,	Arm 1	Inclusion	Change in PP-NRS4	July 14 th , 2021
with Dupilumab in Adults with	randomized,	Abrocitinib 200 mg +	18 years of age or older	Change in EASI-90 at	
Moderate to Severe Atopic	double-blind,	TCS	Diagnosis of chronic atopic	week 4	
Dermatitis on Background	multi-center		dermatitis for at least 6 months		
Topical Therapy		<u>Arm 2</u>	Recent history of inadequate		
	N=600	Dupilumab 300 mg +	response to treatment with		
Pfizer		TCS	medicated topical therapy for AD or		
			have required systemic therapies for		
NCT04345367			control of their disease		
			Exclusion		
			Acute or chronic abnormality		
			Increased risk of developing		
			thromboembolism		
			Unwilling to discontinue current		
			medications		
			Prior treatment with JAK inhibitors		
			or IL-4 or IL-13		
Study to Evaluate Efficacy and	Phase III,	<u>Arm 1</u>	Inclusion	Treatment-emergent	December 1, 2023
Safety of PF-04965842 With or	randomized,	Initial treatment	Aged 12 and older	adverse events	
Without Topical Medications in	quadruple	period: Abrocitinib	Must have completed a qualifying	Serious adverse events	
Subjects Aged 12 years and	masking, Long-	100 mg	parent study		
older with Moderate to Severe	term extension				
Atopic Dermatitis (JADE	study	For patients, whose	Exclusion		
EXTEND)		dose was changed	Other acute or chronic medical		
	N=3000	from abrocitinib 100	conditions		
Pfizer		mg to placebo,	Currently have active forms of		
		placebo was	inflammatory diseases		
NCT03422822		administered for	Ongoing adverse event from parent		
		remainder of study	study		
		Secondary treatment			
		period: Abrocitinib			
		100 mg			

Title / Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Estimated Completion Dates	
Study to Investigate Efficacy and Safety of PF-0465842 in	Phase III, randomized	Arm 2 Initial treatment period: Abrocitinib 200 mg For patients, whose dose was changed from abrocitinib 200 mg to placebo, placebo was administered for remainder of study Secondary treatment period: Abrocitinib 200 mg Arm 1 Abrocitinib 100 mg	Inclusion 12 years or older with a minimum	Loss of response (week 12 to 52)	October 2020	
Subjects Aged 12 Years and Older with Moderate to Severe Atopic Dermatitis with the Option of Rescue Treatment in Flaring Subjects	withdrawal, double-blind N=1231	Arm 2 Abrocitinib 200 mg Arm 3 Placebo	weight of 40kg Diagnosed with atopic dermatitis Recent history of inadequate response or inability to tolerate topical AD treatments			
Pfizer NCT03627767		Placebo	Exclusion Prior treatment with JAKs Other active non-AD inflammatory diseases			
			 Tralokinumab			
Effects of Tralokinumab Treatment of Atopic Dermatitis on Skin Barrier Function Prof. Dr. Stephan Weidinger NCT04556461	Phase II, open- label, mono- center N=16	Tralokinumab 600 mg loading dose followed by 300 mg every 2 weeks	Inclusion Aged 18 and older with atopic dermatitis Subjects with a recent history of inadequate response to treatment with topical medications EASI score >12	Change in trans epidermal water loss (skin barrier function)	March 2022	

Title / Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Estimated Completion Dates
			Exclusion Concurrent enrollment in another clinical trial Previous enrollment in a tralokinumab trial Subjects with mild atopic dermatitis		
Long-term Extension Trial in Subjects with Atopic Dermatitis Who Participated in Previous Tralokinumab Trials (ECZTEND) LEO Pharma NCT03587805	Phase III, open- label, long-term extension N=1125	Tralokinumab	Inclusion Completed the treatment period(s) of one of the parent trials Stable dose of emollient twice daily Exclusion Any condition requiring permeant discontinuation of the trial treatment Patients who participated in a parent trial and experienced a serious adverse event related to the treatment	IGA score of 0 or 1 EASI 75	September 13, 2021
Tralokinumab in Combination with Topical Corticosteroids in Japanese Subjects with Moderate to Severe Atopic Dermatitis (ECZTRA 8) LEO Pharma NCT04587453	Phase 3, randomized, double-blind N=100	Arm 1 Tralokinumab + topical corticosteroids Arm 2 Placebo + topical corticosteroids	Inclusion Japanese subject aged 18 years and above with AD for at least 1 year AD involvement of 10% or more of body surface area Applied a stable dose of emollient twice a day Exclusion Subjects who cannot take TCS Concomitant conditions Known primary immunodeficiency disorder Previous treatment with systemic immunosuppressive drugs, JAKs, or TCS.	IGA score of 0 or 1 EASI 75	September 2021
	<u> </u>	<u> </u>	Upadacitinib	<u> </u>	
Open-Label Extension Study of Upadacitinib in Adult Patients	Phase IIIb, single group	Upadacitinib	Inclusion	Adverse Events	November 24, 2021

Title / Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Estimated Completion Dates	
with moderate to Severe Atopic	assessment,		Successfully completed concomitant			
Dermatitis	open-label		treatment in M16-046 study			
AbbVie	N=600		Exclusion			
			Use of prohibited medications			
NCT04195698						
Evaluation of Upadacitinib in	Phase III,	<u>Arm 1</u>	Inclusion	EASI 75	May 24, 2023	
Adolescent and Adult Patients	randomized,	Upadacitinib dose A	Chronic atopic dermatitis	vIGA-AD score of 0 or 1		
with Moderate to Severe Atopic	quadruple		Moderate to severe AD			
Dermatitis	masked	Arm 2 Upadacitinib dose B	Candidate for systemic therapy			
AbbVie	N=912	Opadacitimo dose B	Exclusion			
Abbvic	11-512	Arm 3	Prior exposure to JAK inhibitor			
NCT03569293		Placebo	Other active skin disease			
A Study to Evaluate	Phase III,	Arm 1	Inclusion	EASI 75	June 30, 2023	
Upadacitinib in Combination	randomized,	Upadacitinib A +	Chronic atopic dermatitis	vIGA-AD score of 0 or 1	Julie 30, 2023	
with Topical Steroids in	double-blind	topical corticosteroids	Moderate to severe AD	VIGA-AD SCOLE OF O OF 1		
Adolescent and Adult	double-billid	topical conticosteroius	Candidate for systemic therapy			
Participants with Moderate to	N=969	Arm 2	Candidate for systemic therapy			
Severe AD	N-909	Upadacitinib B +	Exclusion			
Severe AD		•	Prior exposure to JAK inhibitor			
AbbVio		topical corticosteroids	Other active skin disease			
AbbVie		A 2	Other active skin disease			
NETOSECOMO		Arm 3				
NCT03568318		Placebo +				
		corticosteroids				
A Study to Evaluate the	Open-label	<u>Arm 1</u>	Inclusion	Maximum plasma	November 28, 2024	
Pharmacokinetics, Safety, and		Ages 6 to 12 on low	Ages 2 months to 12 years of age	concentration		
tolerability of Upadacitinib in	N=40	dose UPA	Severe AD	Oral Clearance		
Pediatric patients with Severe		Arm 2				
AD		Ages 6 to 12 on high	Exclusion			
		dose UPA	Prior exposure to JAK			
AbbVie		Arm 3				
		Ages 2 to 6 on low				
NCT03646604		dose UPA				
		<u>Arm 4</u>				
		Ages 2 to 6 on high				
		dose UPA				
		Arm 5				

Title / Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Estimated Completion Dates
		Ages 6 months to 2 years on low dose UPA Arm 6 Ages 6 months to 2 years on high dose UPA			
A Study to Evaluate Upadacitinib in Adolescents and Adult Subjects with Moderate to Severe AD (Measure UP 2) AbbVie NCT03607422	Phase III, randomized, double-blind N=916	Arm 1 UPA dose A Arm 2 UPA dose B Arm 3 Placebo	Inclusion Moderate to severe AD Chronic AD for at least 3 years Ages 12 to 18 Documented history of inadequate response to topical corticosteroids or topical calcineurin inhibitor Exclusion Prior exposure to JAK inhibitor Other skin disease Unwilling to discontinue current medications	EASI75 vIGA-AD score of 0 or 1	July 25, 2023
A Study to Evaluate the Safety of Upadacitinib In Combination with Topical Steroids in Adolescent and Adult Participants with Moderate to Severe AD AbbVie NCT03661138	Phase III, randomized, double-blind N=272	Arm 1 UPA dose A + topical corticosteroids Arm 2 UPA dose B + topical corticosteroids Arm 3 Placebo + topical corticosteroids	Inclusion Active moderate to severe AD Candidate for systemic therapy Exclusion Prior use of a JAK inhibitor Unwilling to discontinue current medications	Adverse events	February 25, 2022

Source: <u>www.ClinicalTrials.gov</u> (NOTE: studies listed on site include both clinical trials and observational studies). There are no on-going trials for baricitinib or dupilumab.

D5. Previous Systematic Reviews and Technology Assessments

We identified seven systematic literature reviews (SLRs) evaluating systemic treatments for patients with moderate-to-severe atopic dermatitis, three of which are summarized below. We did not identify any SLRs that assessed ruxolitinib in atopic dermatitis.

Silverberg, J. I., et al. (2021). "Comparative efficacy and safety of systemic therapies used in moderate-to-severe atopic dermatitis: a systematic literature review and network meta-analysis" 138

This systematic literature review and NMA evaluated the comparative efficacy and safety of several systemic therapies, including oral JAK inhibitors, IL-13 antagonists, and IL-31 antagonists, in adolescents and adults with moderate-to-severe atopic dermatitis. The medications assessed included abrocitinib, baricitinib, dupilumab, lebrikizumab, nemolizumab, tralokinumab and upadacitinib. Investigators identified 19 phase II and phase III RCTS, published before October 2019, to include in their analysis, which comprised of 11 monotherapy and 8 combination trials. Outcomes were analyzed separately for monotherapy and combination therapies (i.e., systemic therapies plus topical corticosteroids). For the monotherapy trials, upadacitinib 30 mg consistently had the highest response rate on all EASI measures, followed by abrocitinib 200 mg and upadacitinib 15 mg. Additionally, upadacitinib 30 mg and abrocitinib 200 mg demonstrated superiority over dupilumab 300 mg, both doses of baricitinib, and nemolizumab. A similar trend was observed for IGA response; however, no data were identified for upadacitinib for IGA response. For the combination therapy NMA, both doses of abrocitinib, dupilumab 300 mg, nemolizumab 30 mg, and lebikizumab 125 mg, had the highest response rates for all EASI measures. Additionally, abrocitinib 200 mg demonstrated superiority over baricitinib, tralokinumab, and dupilumab. On IGA, abrocitinib 200 mg, dupilumab 300 mg, nemolizumab 30 mg, and abrocitinib 100 mg, had the highest response rates. Upadacitinib was not included in the combination therapy NMA. For safety events, in the monotherapy and combination therapy RCTs, none of the treatments had adverse events that were statistically different from placebo; but most treatment arms had numerically higher probabilities of TEAEs than placebo arms. However, the probability of AE leading to discontinuation was generally lower in the treatment arms. There was no statistically significant difference between the active treatments on safety events.

Drucker, A.M., et al. (2020). "Systemic Immunomodulatory Treatments for Patients with Atopic Dermatitis: A Systematic Review and Network Meta-analysis"

Investigators conducted a systematic review assessing the efficacy and safety of systemic immunomodulatory treatments for patients with moderate-to-severe atopic dermatitis. 39 RCTs for 20 different medications, including abrocitinib, baricitinib, dupilumab, tralokinumab, upadacitinib, methotrexate, and other immunosuppressants, antagonists, and monoclonal antibodies, were included in their network meta-analysis. A total of 6360 patients were included, the mean sample size for each RCT was 60 (4-319) patients, and the mean/median age ranged between 6 and 44 years. Eligibility criteria included patients with moderate-to-severe atopic dermatitis, a systemic immunomodulatory therapy as the treatment of focus, and an outcome assessment time point of eight weeks or more. An NMA was performed for each outcome, including change from baseline in EASI, POEM, DLQI, and itch, withdrawals due to adverse events, and frequency of serious adverse events. Data were pooled for trials with 8–16-week treatment timepoints, and trials with greater than 16-week treatment time points were not analyzed.

Multiple drug doses, including dupilumab 300 mg Q2W, baricitinib 2 mg and 4 mg daily, tralokinumab 150 mg Q2W, and 300 mg Q2W had a statistically significant reduction in EASI score compared to placebo, with dupilumab 300 mg Q2W having the highest amount of certainty (mean difference [MD]: -11.3; 95% CrI: 9.7 to 13.1).

When assessing changes in clinical signs of atopic dermatitis among drugs that are already used in clinical practice, it was found that all current drugs were more effective than placebo in clearing atopic dermatitis clinical signs, but with low certainty. When comparing these drugs, dupilumab 300 Q2W and cyclosporine high-dose were more effective in clearing atopic dermatitis signs than methotrexate and azathioprine.

Dupilumab 300 mg Q2W was the only drug that demonstrated clinically meaningful improvements in both POEM (MD: -7.5; 95% CrI: -11.6 to -3.6) and DLQI outcomes (MD: -4.8; 95% CrI: -5.8 to -3.7), with high certainty, while abrocitinib 100 mg and 200 mg, and upadacitinib 15 mg and 30 mg had significant improvements with lower certainty. Additionally, only dupilumab 300 mg Q2W had a statistically significant improvement in the mean change in PP-NRS, relative to placebo, with high certainty. Cyclosporine, dupilumab, methotrexate, and azathioprine could not be compared to each other for the itch outcome due to imprecise estimates.

Safety could not be robustly assessed due to the overall low rates of adverse events. Investigators identified potential limitations in their systematic review, including heterogeneity from incorporating trials that also used background topical medication therapy, using trials that varied in the definition of disease severity, and the lack of head-to-head trials in this analysis.

Siegels, D., et al. (2020). "Systemic Treatments in the Management of Atopic Dermatitis: A Systematic Review and Meta-Analysis"

An SLR and a MA were conducted to evaluate systemic treatments for moderate-to-severe atopic dermatitis. Investigators identified 50 RCTs for 13 different approved treatments in Europe, as of February 2020, to include in their meta-analysis. The medications included baricitinib, dupilumab, methotrexate, upadacitinib, corticosteroids, and other monoclonal antibodies and immunosuppressants. The total patient population was 6681, a majority of which were in dupilumab trials (n=3529), and the average sample size for most trials was less than 100 patients. Thirty trials were conducted in adult populations. One trial was in adolescents, one trial assessed their treatment in children, and 18 trials had age groups inconsistent with the investigators' defined populations of focus.

Meta-analyses could be calculated only for dupilumab, azathioprine, baricitinib, and cyclosporine, as the other trials' evidence had higher risks of bias (RoB). Out of these treatments, dupilumab trials in adults with a dosage of 300 mg Q2W had the most robust and highest quality evidence due to the large number of trials and patients. All dupilumab doses in the trials demonstrated superiority to placebo in EASI 75 and mean change from baseline in EASI, SCORAD, PP-NRS, POEM, cDLQI (in adolescents), and DLQI (in adults). Cumulative safety data for dupilumab indicated that adverse events for dupilumab and placebo were equal and greater than 50% in incidence rates, with conjunctivitis and injection-site reactions being the most common concerns.

Investigators reported that uncertainty limited the evaluation of safety and efficacy of the other treatments' trials. Limitations included lack of published RCTs, most of the included RCTs having a high risk of bias, a relatively low number of patients in most trials, and inclusion of older trials.

E. Long-Term Cost Effectiveness: Supplemental Information

E1. Detailed Methods

Table E.1. Impact Inventory

Sector	Type of Impact (Add additional domains, as relevant)	Included in This And Perspect		Notes on Sources (if quantified), Likely Magnitude	
	(Add additional domains, as relevant)	Health Care Sector	Societal	& Impact (if not)	
	Formal Health C		1 000.000	, , , , , , , , , , , , , , , , , , ,	
Health Outcomes	Longevity effects	Х	Х		
	Health-related quality of life effects	Х	Х		
	Adverse events				
Medical Costs	Paid by third-party payers	Х	Х		
	Paid by patients out-of-pocket				
	Future related medical costs				
	Future unrelated medical costs				
Informal Health Care Se	ector				
Health-Related Costs	Patient time costs	NA			
	Unpaid caregiver-time costs	NA			
	Transportation costs	NA			
Non-Health Care Sector	r				
Productivity	Labor market earnings lost	NA	Х		
	Cost of unpaid lost productivity due to illness	NA	Х		
	Cost of uncompensated household production	NA			
Consumption	Future consumption unrelated to health	NA			
Social services	Cost of social services as part of intervention	NA			
Legal/Criminal Justice	Number of crimes related to intervention	NA			
	Cost of crimes related to intervention	NA			
Education	Impact of intervention on educational achievement of population	NA			
Housing	Cost of home improvements, remediation	NA			

Environment	Production of toxic waste pollution by intervention	NA	
Other	Other impacts (if relevant)	NA	

NA: not applicable

Adapted from Sanders et al¹³⁹

Target Population

The target population for the economic evaluation is adult (aged 18 years or older) patients with moderate-to-severe atopic dermatitis. We pooled across treatment-specific population characteristics in order to estimate the population characteristics used within the model.

Table E.2. Baseline Population Characteristics

	Pooled Population Used in Model
Mean Age	36.5
Percent Female	43.7%
Percent Severe Disease	45.9%
Source	Weighted averages from drug trials ¹⁴⁰⁻¹⁴² ⁶⁹ ^{63,64,143-145} Weighted averages from drug trials ¹⁴⁰⁻¹⁴² ⁶⁹ ^{63,64,143-145}

Treatment Strategies

The list of interventions was developed with input from patient organizations, clinicians, manufacturers, and payers on which treatments to include. The full list of interventions is as follows:

- Abrocitinib (Pfizer)
- Baricitinib (Olumiant[™], Eli Lilly)
- Upadacitinib (RINVOQ[™], AbbVie)
- Tralokinumab (LEO Pharma)

Comparators

Each intervention of interest is compared pairwise with each comparator. The comparators for these interventions were expected to be:

- Dupilumab (Dupixent™, Sanofi)
- Topical therapies (including emollients, with or without topical corticosteroid or calcineurin inhibitor)

Topical therapies, including emollients, topical corticosteroids, and calcineurin inhibitors, are a commonly used treatment for atopic dermatitis. Dupilumab was approved for treating moderate-to-severe atopic dermatitis in 2017, becoming the only approved alternative treatment for patients beyond the topical therapies. These two groups represent the predominantly used available treatment options for patients with moderate-to-severe atopic dermatitis.

E2. Results

Table E2.1. presents the incremental costs and benefits of each therapy compared to standard of care and dupilumab as measured by the Peak Pruritis Numerical Rating Scale (PP-NRS), and the sleep scores for the POEM, SCORAD, and ADerm-IS measures. The average incremental change in score over the five-year time horizon is presented where data was available by health state, as no commonly meaningful threshold or translation for these measurements was identified.

Table E2.1. Incremental Cost-Consequence Results for the Base Case

Treatment	Comparator	Incremental Cost	Incremental QALYs gained (same as evLYG)	Incremental Gain in Average PP- NRS†	Incremental Gain in Average POEM (Sleep)†	Incremental Gain in Average SCORAD (Sleep)†	Incremental Gain in Average ADerm-IS (Sleep)†	Incremental Gain in Average HADS (Anxiety and Depression)
Abrocitinib *	SoC	\$90,600	0.61	NA	NA	NA	NA	NA
Baricitinib	SoC	\$17,500	0.26	NA	NA	NA	NA	NA
Tralokinum ab*	SoC	\$39,900	0.32	-0.96	-0.44	-1.04	NA	-1.04
Upadacitini b	SoC	\$131,800	0.53	-1.50	NA	NA	-5.21	NA
Dupilumab	SoC	\$54,000	0.50	NA	NA	NA	NA	NA
Abrocitinib *	Dupilumab	\$36,500	0.12	NA	NA	NA	NA	NA
Baricitinib	Dupilumab	Less Costly	Less Effective	NA	NA	NA	NA	NA
Tralokinum ab*	Dupilumab	Less Costly	Less Effective	NA	NA	NA	NA	NA
Upadacitini b	Dupilumab	\$77,800	0.03	NA	NA	NA	NA	NA

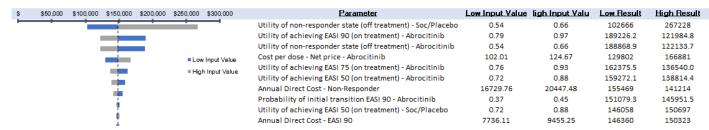
ADerm-IS: Atopic Dermatitis Impact Scale, NA: not available, POEM: Patient-Oriented Eczema Measure, QALY: quality-adjusted life year, evLYG: equal-value life-year gained, PP-NRS: Peak Pruritis Numeric Rating Scale, SCORAD: Scoring Atopic Dermatitis; HADS, hospital anxiety and depression scale;

^{*}Using a placeholder price

[†]Difference in average change in score from pooled baseline

Description evLYG Calculations

The cost per evLYG considers any extension of life at the same "weight" no matter what treatment is being evaluated. Below are the stepwise calculations used to derive the evLYG.


- 1. First, we attribute a utility of 0.851, the age- and gender-adjusted utility of the general population in the US that are considered healthy. ¹⁴⁶
- 2. For each cycle (Cycle I) in the model where using the intervention results in additional years of life gained, we multiply this general population utility with the additional life years gained (ΔLYG).
- 3. We sum the product of the life years and average utility (cumulative LYs/cumulative QALYs) for Cycle I in the comparator arm with the value derived in Step 2 to derive the equal value of life years (evLY) for that cycle.
- 4. If no life years were gained using the intervention versus the comparator, we use the conventional utility estimate for that Cycle I.
- 5. The total evLY is then calculated as the cumulative sum of QALYs gained using the above calculations for each arm.
- 6. We use the same calculations in the comparator arm to derive its evLY.

Finally, the evLYG is the incremental difference in evLY between the intervention and the comparator arms.

E3. Sensitivity Analyses


To demonstrate effects of uncertainty on both costs and health outcomes, we varied input parameters using available measures of parameter uncertainty (i.e., standard errors) or reasonable ranges to evaluate changes in cost per addition QALY for each modeled treatment. Across all modeled comparisons, the health state utility values were identified as the most influential model parameters on the incremental cost-effectiveness ratios, followed by the initial transition probabilities, non-responder direct costs, and discontinuation rates. Figures E3.1 to E3.9 display the results of the one-way sensitivity analyses performed on each modeled comparison.

Figure E3.1 Tornado Diagram for Abrocitinib versus Standard of Care

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.2 Tornado Diagram for Baricitinib versus Standard of Care

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.3 Tornado Diagram for Tralokinumab versus Standard of Care

\$	\$200,000	\$400,000	\$600,000	\$800,000	\$1,000,000 \$1,200,000	Parameter	Low Input Value	ligh Input Valu	Low Result	High Result
_						Utility of non-responder state (off treatment) - Soc/Placebo	0.54	0.66	68843	1079007
						Utility of non-responder state (off treatment) - Tralokinuma	0.54	0.66	357713.6	79007.4
						Utility of achieving EASI 90 (on treatment) - Tralokinumab	0.79	0.97	155284	110953
	i i				■ Low Input Value	Utility of achieving EASI 50 (on treatment) - Tralokinumab	0.72	0.88	148596.3	114640.3
	Ĭ.				= High Input Value	Cost per dose - Net price - Tralokinumab	1073.94	1312.6	112694	146162
	I				- riigirii pat valot	Utility of achieving EASI 75 (on treatment) - Tralokinumab	0.76	0.93	147472	115318
	T					Annual Direct Cost - Non-Responder	16729.76	20447.48	136914	121943
	1					Utility of achieving EASI 50 (on treatment) - Soc/Placebo	0.72	0.88	125547	133557
						Risk of discontinuation - SoC	0.23	0.28	132707.8	126759.3
	1					Probability of initial transition EASI 90 - Tralokinumab	0.16	0.19	132463.2	126694.9
						Utility of achieving EASI 75 (on treatment) - Soc/Placebo	0.76	0.93	126617	132367
						Utility of achieving EASI 90 (on treatment) - Soc/Placebo	0.79	0.97	127065	131881

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.4 Tornado Diagram for Upadacitinib versus Standard of Care

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.5 Tornado Diagram for Dupilumab versus Standard of Care

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.6. Tornado Diagram for Abrocitinib versus Dupilumab

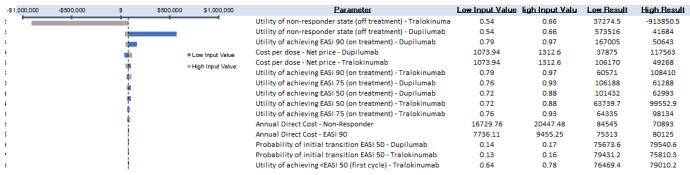

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.7 Tornado Diagram for Baricitinib versus Dupilumab

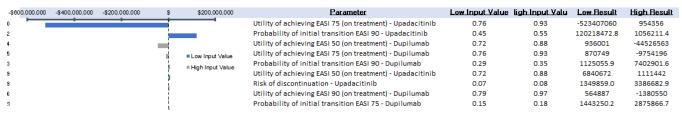

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.8 Tornado Diagram for Tralokinumab versus Dupilumab

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Figure E3.9 Tornado Diagram for Upadacitinib versus Dupilumab

^{*}Note lower input may reflect either upper or lower ICER value depending on the direction that the input has on the ICER output.

Table E.3. Results of Probabilistic Sensitivity Analysis for Interventions versus Standard of Care and Dupilumab

	In	ntervention		the Incremental Cost-Effectivene	Incremental		
	Mean	Credible Range	Mean	Credible Range	Mean	Credible Range	
			Abro	ocitinib vs SoC			
Total Costs	\$184,796.41	(\$171,640 - \$199,554)	\$87,294.14	(\$78,966 - \$95,735)	\$97,502.27	(\$92,674 - \$103,819)	
Total QALYs	3.63	(3.44 - 3.82)	2.99	(2.72 - 3.26)	0.65	(0.56 - 0.71)	
ICER					\$150,587.32	(\$129,766 - \$185,250)	
		l	Bar	icitinib vs SoC			
Total Costs	\$102,520.36	(\$94,665 - \$110,261)	\$87,294.14	(\$78,966 - \$95,735)	\$15,226.22	(\$15,699 - \$14,525)	
Total QALYs	3.18	(2.93 - 3.41)	2.99	(2.72 - 3.26)	0.19	(0.15 - 0.21)	
ICER					\$80,212.86	(\$76,177 - \$100,000)	
		1	Tralo	kinumab vs SoC			
Total Costs	\$119,605.79	(\$111,474 - \$128,004)	\$87,294.14	(\$78,966 - \$95,735)	\$32,311.65	(\$32,268 - \$32,508)	
Total QALYs	3.22	(3.00 - 3.45)	2.99	(2.72 - 3.26)	0.23	(0.18 - 0.27)	
ICER					\$138,765.04	(\$118,531 - \$174,722)	
		1	Upac	lacitinib vs SoC			
Total Costs	\$225,978.46	(\$208,645 - \$243,601)	\$87,294.14	(\$78,966 - \$95,735)	\$138,684.31	(\$129,679 - \$147,866)	
Total QALYs	3.56	(3.31 - 3.76)	2.99	(2.72 - 3.26)	0.57	(0.50 - 0.59)	
ICER					\$244,292.28	(\$220,579 - \$296,778)	
	<u> </u>		Dun	ilumab vs SoC			

		PSA Results	s: Credible Ranges fo	or the Incremental Cost-Effect	tiveness Ratios	
Total Costs	\$145,143.99	(\$135,673 - \$154,619)	\$87,294.14	(\$78,966 - \$95,735)	\$57,849.84	(\$56,707 - \$58,884)
Total QALYs	3.51	(3.30 - 3.70)	2.99	(2.72 - 3.26)	0.52	(0.44 - 0.57)
ICER					\$111,171.08	(\$98,772 - \$133,717)
			Abroci	tinib vs Dupilumab		
Total Costs	\$184,796.41	(\$171,640 - \$199,554)	\$145,143.99	(\$135,673 - \$154,619)	\$39,652.42	(\$35,968 - \$44,934)
Total QALYs	3.63	(3.44 - 3.82)	3.51	(3.30 - 3.70)	0.13	(0.12 - 0.14)
ICER					\$311,948.32	(\$256,828 - \$374,276)
			Barici	tinib vs Dupilumab		
Total Costs	\$102,520.36	(\$94,665 - \$110,261)	\$145,143.99	(\$135,673 - \$154,619)	-\$42,623.63	(-\$44,359\$41,007)
Total QALYs	3.18	(2.93 - 3.41)	3.51	(3.30 - 3.70)	-0.33	(-0.370.30)
ICER					Less Costly, Less Effective	Less Costly, Less Effective
			Tralokir	numab vs Dupilumab		
Total Costs	\$119,605.79	(\$111,474 - \$128,004)	\$145,143.99	(\$135,673 - \$154,619)	-\$25,538.19	(-\$26,616\$24,199)
Total QALYs	3.22	(3.00 - 3.45)	3.51	(3.30 - 3.70)	-0.29	(-0.300.26)
ICER					Less Costly, Less Effective	Less Costly, Less Effective
			Upadao	citinib vs Dupilumab		
Total Costs	\$225,978.46	(\$208,645 - \$243,601)	\$145,143.99	(\$135,673 - \$154,619)	\$80,834.47	(\$72,973 - \$88,981)
Total QALYs	3.56	(3.31 - 3.76)	3.51	(3.30 - 3.70)	0.05	(0.01 - 0.06)
ICER					\$1,707,871.35	(\$5,293,659 - \$1,537,610)

ICER: incremental cost-effectiveness ratio, QALY: quality-adjusted life-year, SoC: standard of care

Figure E3.4. Results of Probabilistic Sensitivity Analysis for Cost Effectiveness at Different Thresholds

			Vs SoC		
Cost-Effectiveness Threshold	Abrocitinib*	Baricitinib	Tralokinumab*	Upadacitinib	Dupilumab
\$50,000	0%	45%	12%	0%	0%
\$100,000	3%	74%	43%	0%	38%
\$150,000	49%	85%	65%	3%	76%
\$200,000	82%	90%	75%	25%	92%
		Vs	Dupilumab		
Cost-Effectiveness Threshold	Abrocitinib*	Baricitinib	Tralokinumab*	Upadacitinib	
\$50,000	0%	0%	0%	0%	
\$100,000	0%	0%	0%	0%	
\$150,000	0%	0%	0%	0%	
\$200,000	0%	0%	0%	0%	

SoC: standard of care

E4. Scenario Analyses

Scenario Analysis 1 – Modified Societal Perspective

We included productivity loss due to moderate-to-severe AD as indirect costs by health state. We derived estimates by health state using responses to the Workplace Productivity and Activity Impairment (WPAI) questionnaire, collected in the upadacitinib clinical trials. The work productivity loss percentage scores were multiplied by the average annual US wages from the US Social Security Administration and adjusted to per-cycle values.¹⁴⁷

Table E4.1. Scenario Analysis Inputs – Productivity Loss

Health State	Value	Source
Non-responder		MEASURE UP 1 & 2
EASI 50		
EASI 75		
EASI 90		

EASI: Eczema Area Severity Index, SE: standard error

The total discounted costs, quality-adjusted life years (QALYs), life years (LYs), and equal value of life years gained (evLYG) over the five-year time horizon under the modified societal perspective are presented in Table E4.2 The drug costs and patient outcomes remained the same compared to the base case, and the table shows the base case total costs for comparison. The total cost from the modified societal perspective versus the base case increased by 10-26% for the interventions and 36% for standard of care.

Table E4.2. Results for the Modified Societal Perspective Scenario Analysis

Treatment	Base Case Total Cost	Scenario Total Cost	QALYs	Life Years	evLYGs
Abrocitinib*	\$178,400	\$199,700	3.59	4.85	3.59
Baricitinib	\$105,300	\$132,800	3.23	4.85	3.23
Tralokinumab*	\$127,700	\$154,200	3.29	4.85	3.29
Upadacitinib	\$219,700	\$242,100	3.51	4.85	3.51
Dupilumab	\$141,900	\$165,300	3.47	4.85	3.47
Standard of Care	\$87,800	\$119,100	2.98	4.85	2.98

^{*}Using a placeholder price

Table E4.3 presents the incremental results from the modified societal perspective scenario analysis, which include incremental cost-effectiveness ratios for incremental cost per LY gained, incremental cost per QALY gained, and incremental cost per evLYG gained. Incremental cost-effectiveness ratios from the modified societal perspective versus the base case when applying the standard of care comparator decreased by 7% to 22% across the therapies evaluated.

Table E4.3. Incremental Cost-Effectiveness Ratios for the Modified Societal Perspective Analysis

Treatment	Comparator	Cost per QALY Gained	Cost per Life Year Gained	Cost per evLYG
Abrocitinib*	SoC	\$133,900	\$-	\$133,900
Baricitinib	SoC	\$58,100	\$-	\$58,100
Tralokinumab*	SoC	\$115,900	\$-	\$115,900
Upadacitinib	SoC	\$233,700	\$-	\$233,700
Dupilumab	SoC	\$96,200	\$-	\$96,200
Abrocitinib*	Dupilumab	\$287,700	\$-	\$287,700
Baricitinib	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Tralokinumab*	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Upadacitinib	Dupilumab	\$1,890,300	\$-	\$1,890,300

SOC: Standard of Care; QALY: quality adjusted life-year; evLYG: equal value life year gained;

Scenario Analysis 2 – Lifetime Time Horizon

We extended the model time horizon from 5 years to lifetime in this scenario to capture longer term value, though we note that only one line of treatment was modeled in order to focus on the comparisons of interest.

Table E4.4. Results for the Lifetime Time Horizon Scenario

Treatment	Drug Cost	Total Cost	QALYs	Life Years	evLYGs
Abrocitinib*	\$200,631	\$585,944	15.82	24.31	15.82
Baricitinib	\$34,302	\$448,118	15.01	24.31	15.01
Tralokinumab*	\$77,924	\$485,329	15.19	24.31	15.19
Upadacitinib	\$195,831	\$597,035	15.39	24.31	15.39
Dupilumab	\$112,250	\$509,336	15.49	24.31	15.49
Standard of Care	\$0	\$426,060	14.67	24.31	14.67

eVLYG: equal-value life-years gained, QALY: quality-adjusted life-year

^{*}Using a placeholder price

^{*}Using a placeholder price

Table E4.5. Incremental Cost-Effectiveness Ratios for the Lifetime Time Horizon Scenario

Treatment	Comparator	Cost per QALY Gained	Cost per Life Year Gained	Cost per evLYG
Abrocitinib*	SoC	\$136,784	\$-	\$136,784
Baricitinib	SoC	\$63,159	\$-	\$63,159
Tralokinumab*	SoC	\$113,150	\$-	\$113,150
Upadacitinib	SoC	\$237,668	\$-	\$237,668
Dupilumab	SoC	\$100,408	\$-	\$100,408
Abrocitinib*	Dupilumab	\$224,072	\$-	\$224,072
Baricitinib	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Tralokinumab*	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Upadacitinib	Dupilumab	Dominated	\$-	Dominated

SOC: Standard of Care

Table E4.5 presents the incremental results from the lifetime time horizon scenario analysis, which include incremental cost-effectiveness ratios for incremental cost per LY gained, incremental cost per QALY gained, and incremental cost per evLYG gained. Incremental cost-effectiveness ratios from the lifetime time horizon versus the base-case five-year horizon when applying the standard of care comparator decreased by 4% to 13% across the therapies evaluated. Compared to dupilumab, upadacitinib became dominated in the lifetime scenario.

Scenario Analysis 3 – Abrocitinib with a 12-week Initial Cycle

In phase III trials JADE MONO-1 and 2, Abrocitinib and placebo arms were evaluated at 12-weeks rather than 16-weeks (therapies were evaluated at 16 weeks in JADE COMPARE and in every other trial for included AD therapies). In the base-case model, Abrocitinib's initial impact on patients was evaluated at the end of the first 16-week cycle. To test the impact of this assumption, we built a scenario where Abrocitinib patients were evaluated at 12 weeks. Decreasing the initial cycle from 16-weeks to 12-weeks had no effect on total QALYs or life-years; changes in drug costs drove changes in total costs and ICERs by small amounts presented in table E4.6.

^{*}Using a placeholder price

Table E4.6. Effect of 12-week Initial Cycle on Dupilumab Costs

Abrocitinib Outcomes	Base Case (16- week initial cycle)	Alternative Scenario (12- week initial cycle)	% Difference
Drug Cost	\$113,174	\$111,631	-1.4%
Total Cost	\$178,362	\$176,762	-0.9%
ICER vs SoC	\$148,341	\$146,927	-1.0%
ICER vs Dupilumab	\$303,352	\$302,661	-0.2%

ICER: incremental cost-effectiveness ratio, SoC: standard of care

Scenario Analysis 4 – Combination therapy with topical corticosteroids

Several clinical trials for emerging atopic dermatitis therapies allowed patients to use topical corticosteroids (TCS) in combination with the therapies being assessed, including JADE COMPARE, ECZTRA 3, AD UP, BREEZE AD 7, LIBERTY AD CHRONOS, and Guttmann-Yassky (2018). The use of TCS changes clinical outcomes and is therefore assessed in a scenario analysis separate from the base case analysis. Initial response health state transition probabilities, reported in Table E4.7, were derived from a fixed effects network meta-analysis using data from the aforementioned studies. In addition to differential initial health state transitions, we assumed that patients would use one 60 ml tube of over-the-counter mometasone furoate (a common brand of TCS) per 16-week cycle, whose average wholesale price was \$57 (NDC 68462-0385-02)¹⁴⁸.

Drug costs and total costs were higher in the combination therapy scenario for all therapies, with increases ranging from 6-36%. Total costs decreased by 2% for those on standard of care plus TCS. QALYs increased 2-4% across all therapies and SoC in the combination therapy scenario.

Incremental cost-effectiveness results were all nominally larger (9-14%) in the combination therapy scenario when compared to standard of care/placebo but remained in the same order of cost effectiveness. No therapies changed relationship to a cost-effectiveness threshold. When compared to dupilumab, both baricitinib and tralokinumab remained less costly and less effective, however dupilumab switches to dominate upadacitinib in the combination therapy scenario.

Table E4.7. Initial Response Health State Transition Probabilities from the Network Meta-Analysis of Combination Therapy Trials

				EASI 90-
Treatment	EASI<50	EASI 50-74	EASI 75-89	100
Placebo	56%	19%	14%	10%
Abrocitinib 200 mg				
Baricitinib 2 mg				
Tralokinumab 300 mg				
Upadacitinib 30 mg				
Dupilumab 300 mg Q2W				

Table E4.8. Results for the Combination Therapy Scenario

Treatment	Drug Cost†	Total Cost	QALYs	Life Years	evLYGs
Abrocitinib*	\$128,700	\$191,200	3.7	4.8	3.7
Baricitinib	\$36,500	\$111,200	3.3	4.8	3.3
Tralokinumab*	\$69,000	\$140,800	3.4	4.8	3.4
Upadacitinib	\$171,600	\$237,600	3.6	4.8	3.6
Dupilumab	\$88,300	\$153,800	3.6	4.8	3.6
Standard of Care	\$-	\$86,300	3.0	4.8	3.0

eVLYG: equal-value life-years gained, QALY: quality-adjusted life-year

^{*}Using a placeholder price; †TCS included as a health state cost, not a drug cost

Table E4.9. Incremental Cost-Effectiveness Ratios for the Combination Therapy Scenario

Treatment	Comparator	Cost per QALY Gained	Cost per Life Year Gained	Cost per evLYG
Abrocitinib	SoC	\$163,400	\$-	\$163,400
Baricitinib	SoC	\$81,800	\$-	\$81,800
Tralokinumab	SoC	\$142,600	\$-	\$142,600
Upadacitinib	SoC	\$270,600	\$-	\$270,600
Dupilumab	SoC	\$120,600	\$-	\$120,600
Abrocitinib	Dupilumab	\$452,900	\$-	\$452,900
Baricitinib	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Tralokinumab	Dupilumab	Less Costly, Less Effective	\$-	Less Costly, Less Effective
Upadacitinib	Dupilumab	Dominated (More Costly, Less Effective)	\$-	Dominated (More Costly, Less Effective)

SOC: Standard of Care

^{*}Using a placeholder price

Scenario Analysis 5 – A portion of responding patients on Tralokinumab switch from q2w to q4w

In a double-blind, placebo+TCS controlled phase III trial (ECZTRA3), patients who achieved EASI 75 and/or clear or almost clear skin after 16 weeks of treatment with tralokinumab every two weeks plus TCS were able to switch to dosing every four weeks. As the cost of treatment would decrease for those taking tralokinumab therapy less frequently, we employed a scenario analysis to assess the potential impact of this dosing schedule on cost-effectiveness estimates.

In ECZTRA3 clinical trial, patients who achieved IGA score of 0 or 1 and/or a minimum of an EASI75 score at the end of the 16-week trial period were rerandomized to receive an equal tralokinumab dose every 4 weeks (Q4W) or every 2 weeks (Q2W). In this scenario analysis, we assume no differential outcomes between the two dosing arms in the model as treatment response at week 32 was comparable between the two dosing arms (92.5% maintained a minimum EASI75 in the Q2W trial arm compared to 90.8% in the Q4W trial arm). We assume in this scenario analysis that 50% of patients achieving EASI75 or higher will switch to Q4W dosing; we make this assumption based on the manufacturer's analysis of the clinical trial data recognizing this is an estimate pending real world data. Because the clinical trial informing the analysis allowed patients to use concurrent TCS therapy, these results are only comparable to the scenario analysis of combination therapy.

The result for this scenario, where all patients achieving EASI75 or higher after the initial 16-week trial period switch to a Q4W dosing regimen, resulted in a 15% decrease in drug costs over a 5-year time horizon and an 8% decrease in total costs. Versus standard of care, tralokinumab's ICER decreased 20% to \$115,000 per additional QALY gained, however the therapy was still less effective and less costly than dupilumab. There were no changes in cost-effectiveness threshold categorization.

Table E4.10. Effect of dosing change on Tralokinumab costs

Tralokinumab Outcomes	Base Case (all	Alternative Scenario (all	%
Traiokinumab Outcomes	patients Q2W +TCS)	patients ≥EASI75 Q4W +TCS)*	Difference
Drug Cost	\$69,044	\$58,401	-15%
Total Cost	\$140,776	\$130,132	-8%
ICER vs SoC	\$142,646	\$114,765	-20%
ICER vs Dupilumab	Less Costly, Less	Less Costly, Less Effective	NA
ICEN VS DUPITUTION	Effective		

Q2W: dosed once every two weeks; Q4W: dosed once every four weeks;

^{*}Switch to Q4W in scenario occurs after initial 16-week trial period and is dependent on their response at 16 weeks

E5. Prior Economic Models

The results of the cross validation showed that our model results were similar to other available atopic dermatitis models. We identified two published economic evaluations of dupilumab for treatment of moderate to severe atopic dermatitis. ^{149,150} No prior economic evaluations of abrocitinib, baricitinib, upadacitinib, or tralokinumab were found.

Researchers in the US developed a 16-week decision tree linked to a Markov model estimating a price range in which dupilumab plus emollients would be considered cost-effective compared to emollients only (SOC) in adult patients with moderate to severe AD, using efficacy data form SOLO trials. Their analysis used a US payer perspective over a lifetime horizon. The model included two health states, with patients who achieved ≥EASI 75 improvement after 16-week trial continuing on dupilumab, and non-responders switching to and remaining on SOC. After 4-month cycles, dupilumab patients could either continue to respond or transition to SOC or die. They applied utility values change from baseline in the model, with 0.21 for patients on dupilumab, 0.03 for patients on SOC, and 0.25 for non-responders. They found that dupilumab produced 1.12 more QALYs than SOC (15.95 vs 14.83) and \$32,089 additional non-dupilumab drug costs (\$299,449 vs \$331,538). Although their model did not generate an incremental cost-effectiveness ratio, the QALYs and lifetime non-dupilumab drug costs estimates are similar to ours.

Costanzo and colleagues estimated the cost effectiveness of dupilumab plus SOC vs SOC in the Italian adult population with severe AD, using a 1-year decision tree followed by a lifetime horizon Markov model.¹50 Their analysis adopted the Italian National Health Service perspective, with utility values of 0.66 at baseline for both groups, 0.95 for dupilumab and 0.78 for SOC after week 16, and 0.78 for non-responder group. They found that dupilumab generated 2.42 more QALYs than SOC (16.96 vs 14.57), with an incremental cost-effectiveness ratio of € 33,263 per QALY gained. The results from their analyses are not directly comparable to the results of the cost-effectiveness analysis presented in this report, due to different severity of disease in two populations. However, it is interesting to note that the utility values of dupilumab used in their study are slightly higher than values used in our model. Whereas we used same utility values to dupilumab and SOC, ranging from 0.81 to 0.89 for responders and 0.60 for non-responder.

In the <u>2017 ICER report</u>, we estimated the cost effectiveness of dupilumab for moderate-to-severe AD compared to usual care over a lifetime horizon from a US health system perspective. ¹¹⁶ We found that dupilumab produced 1.91 more QALYs than usual care (16.28 vs 14.37), with an incremental cost-effectiveness ratio of \$101,830 per QALY gained. The model results in this analysis were similar to the prior ICER report.

F. Potential Budget Impact: Supplemental Information

Methods

We used results from the same model employed for the cost-effectiveness analyses to estimate total potential budget impact. Potential budget impact was defined as the total differential cost of using each new therapy rather than relevant existing therapies (i.e., usual care, dupilumab) for the treated population, calculated as differential health care costs (including drug costs) minus any offsets in these costs from averted health care events. All costs were undiscounted and estimated over five-year time horizons. The five-year timeframe was of primary interest, given the potential for cost offsets to accrue over time and to allow a more realistic impact on the number of patients treated with the new therapy.

This potential budget impact analysis included the estimated number of individuals in the US who would be eligible for treatment. To estimate the size of the potential candidate populations for treatment, we used inputs from the US market leading biologic therapy, dupilumab, across the following age categories (12-17 years old; and 18 and older). We note that limitations exist in using cost-effectiveness model findings within the adult population for estimating the potential budget impact within younger ages but consider those limitations to be outweighed by a comprehensive approach that includes all eligible age categories. For adults (18 years and older), evidence suggests 1,675,000 US individuals have moderate-to-severe uncontrolled disease and are eligible for treatment. For adolescents (age 12-17), evidence suggests 389,000 US individuals have moderate-to-severe uncontrolled disease and are eligible for treatment. For the purposes of this analysis, we summed across the two age categories and assumed that 20% of these patients would initiate new treatments in each of the five years, or 412,800 patients per year.

Consistent with the <u>ICER Reference Case</u>, we calculated the budget impact of new treatments (abrocitinib, baricitinib, tralokinumab, and upadacitinib) given these treatments' displacement of dupilumab and usual care. We assigned an equal distribution of annually eligible individuals for each of the four treatments (abrocitinib, baricitinib, tralokinumab, and upadacitinib) = 412,800 / 4 = 103,200 new individuals per treatment per year (for five years). Per the ICER Reference Case, we assumed that all the dupilumab users switch over to each of the four new treatments in the potential budget impact analyses. We assumed that approximately 2.5% of those adolescents and adults eligible in the US are currently taking dupilumab (approximately 51,600) based on reports that over 100,000 US patients have started dupilumab.¹⁵² This assumption results in a 10% mix of dupilumab and 90% mix of usual care alone upon which each new treatment is evaluated.

ICER's methods for estimating potential budget impact are described in detail elsewhere and have recently been updated. ^{153,154} The intent of our revised approach to budgetary impact is to document the percentage of patients that could be treated at selected prices without crossing a budget impact threshold that is aligned with overall growth in the US economy.

Using this approach to estimate potential budget impact, we then compared our estimates to an updated budget impact threshold that represents a potential trigger for policy mechanisms to improve affordability, such as changes to pricing, payment, or patient eligibility. As described in ICER's methods presentation (https://icer-review.org/methodology/icers-methods/icer-value-assessment-framework-2/), this threshold is based on an underlying assumption that health care costs should not grow much faster than growth in the overall national economy. From this foundational assumption, our potential budget impact threshold is derived using an estimate of growth in US gross domestic product (GDP) +1%, the average number of new drug approvals by the FDA over the most recent two-year period, and the contribution of spending on retail and facility-based drugs to total health care spending.

The five-year annualized potential budget impact threshold that should trigger policy actions to manage access and affordability is calculated to total approximately \$819 million per year for new drugs for 2019-2020.

Results

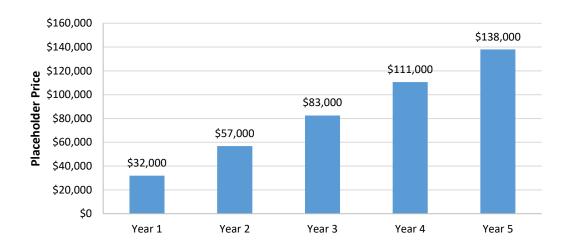
Table F.1 illustrates the per-patient budget impact results in more detail, for:

- Abrocitinib WAC (\$46,600* per year), discounted WAC (\$41,400* per year), and the prices
 to reach \$150,000, \$100,000, and \$50,000 per QALY (\$41,800, \$30,600, and \$19,400 per
 year, respectively) compared to usual care;
- Baricitinib WAC (\$29,000 per year), discounted WAC (\$19,400 per year), and the prices to reach \$150,000, \$100,000, and \$50,000 per QALY (\$33,300, \$24,400, and \$15,600 per year, respectively) compared to usual care;
- Tralokinumab WAC (\$41,800*per year), discounted WAC (\$31,100* per year), and the prices to reach \$150,000, \$100,000, and \$50,000 per QALY (\$35,000, \$25,700, and \$16,400 per year, respectively) compared to usual care and;
- Upadacitinib WAC (\$64,300 per year), discounted WAC (\$63,400 per year), and the prices to reach \$150,000, \$100,000, and \$50,000 per QALY (\$41,500, \$30,400, and \$19,300 per year, respectively) compared to usual care.

* Based on placeholder prices that were assumed for abrocitinib and tralokinumab. Interpret findings with caution.

We note that dupilumab is considered a part of usual care and therefore not displayed as a standalone result.

Table F1. Per-Patient Budget Impact Calculations Over a Five-year Time Horizon


		Average Annual Per Patient Budget Impact							
	WAC*	Discounted WAC*	\$150,000/QALY	\$100,000/QALY	\$50,000/QALY				
Abrocitinib vs. usual care	\$31,200	\$27,600	\$27,300	\$18,800	\$10,300				
Baricitinib vs. usual care	\$8,600	\$5,000	\$10,700	\$7,400	\$4,100				
Tralokinumab vs. usual care	\$16,500	\$11,700	\$13,100	\$9,100	\$5,000				
Upadacitinib vs. usual care	\$38,300	\$38,400	\$22,400	\$15,200	\$8,100				

QALY: quality-adjusted life year, WAC: wholesale acquisition cost

Figures F.1-F.4 illustrate the cumulative per-patient budget impact calculations for abrocitinib, baricitinib, tralokinumab, and upadacitinib compared to usual care (including 10% of patients treated with dupilumab), based on the net prices used within the cost-effectiveness analysis. We suggest caution in interpreting the potential budget impact of abrocitinib and tralokinumab due to the placeholder annual net prices assumed. We observed the general trend of decreasing year over year per treated patient potential budget impacts due to treatment discontinuation over time. Year 4 in the cost-effectiveness model included an additional model cost cycle compared to the other years . The same year 4 method was applied across evaluated treatments and for usual care and therefore, we did not smooth over the year-by-year cumulative findings.

^{*} Placeholder prices were assumed for abrocitinib and tralokinumab. Interpret findings with caution.

Figure F1. Cumulative Net Cost Per Patient Treated with Abrocitinib for Five Years at Placeholder \$41,400 per Year Price*

^{*} Placeholder prices were assumed. Interpret findings with caution.

Figure F2. Cumulative Net Cost Per Patient Treated with Baricitinib for Five Years at \$19,400 per Year Price

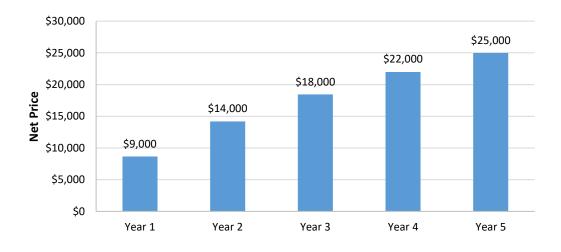
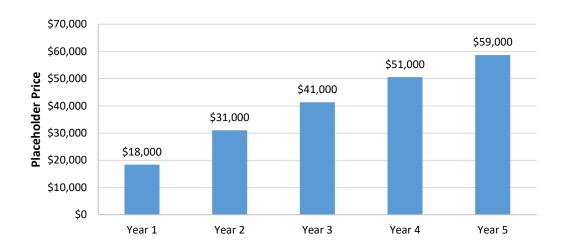
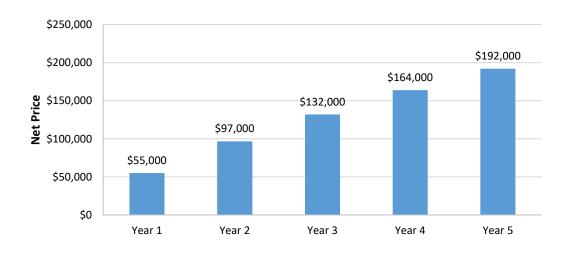




Figure F3. Cumulative Net Cost Per Patient Treated with Tralokinumab for Five Years at Placeholder \$31,100 per Year Price*

^{*} Placeholder prices were assumed. Interpret findings with caution.

Figure F4. Cumulative Net Cost Per Patient Treated with Upadacitinib for Five Years at \$63,400 per Year Price

G. Additional Evidence Tables

Moderate to Severe Population

Table G1.1. Study Quality Table 35-37,40,42,45,46,48,50,51,56,63,64,69,80,81

Trial	Comparable Groups	Non- differential Follow-up	Patient/ Investigator Blinding	Clear Definition of Intervention	Clear Definition of Outcomes	Selective Outcome Reporting	Measurements Valid	Intention- to-treat Analysis	Approach to Missing Data	USPSTF Rating
				A	brocitinib					
JADE MONO-1	Yes	Yes	Yes	Yes	Yes	No	Yes	No	MI	Good
JADE MONO-2	Yes	No	Yes	Yes	Yes	No	Yes	No	MI	Good
JADE COMPARE	Yes	Yes	Yes	Yes	Yes	No	Yes	No	NRI	Good
Gooderham 2019	Yes	No	Yes	Yes	Yes	No	Yes	No	MI*	Fair
				1	Baricitinib					
BREEZE-AD1	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	MI and NRI	Good
BREEZE-AD2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	MI and NRI	Good
BREEZE-AD5	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	MM**	Good
BREEZE-AD7	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	MM	Good
Guttman- Yassky 2018	Yes	No	Yes	Yes	Yes	No	Yes	Yes	MM	Good
				Tra	alokinumab					
ECZTRA 1	Yes	Yes	Yes	Yes	Yes	No	Yes	No	NRI and MI	Good
ECZTRA 2	Yes	Yes	Yes	Yes	Yes	No	Yes	No	NRI and MI	Good
ECZTRA 3	Yes	Yes	Yes	Yes	Yes	No	Yes	No	NRI and MI	Good

Trial	Comparable Groups	Non- differential Follow-up	Patient/ Investigator Blinding	Clear Definition of Intervention	Clear Definition of Outcomes	Selective Outcome Reporting	Measurements Valid	Intention- to-treat Analysis	Approach to Missing Data	USPSTF Rating
				U	padacitinib					
MEASURE Up 1	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	NRI and MM	Good
MEASURE Up 2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	NRI and MM	Good
AD-UP	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	NRI and MM	Good
Guttman- Yassky 2020	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	LOCF and NRI	Good
					Dupilumab					
LIBERTY AD SOLO 1	Yes	Yes	Yes	Yes	Yes	No	Yes	No	MI, LOCF and NRI	Good
LIBERTY AD SOLO 2	Yes	Yes	Yes	Yes	Yes	No	Yes	No	MI, LOCF and NRI	Good
LIBERTY AD CHRONOS	Yes	Yes	Yes	Yes	Yes	No	Yes	No	MI	Good
Thaci 2016	Yes	Yes	Yes	Yes	Yes	No	Yes	No	LOCF and NRI	Good

Includes only published RCTs. LOCF: last observation carried forward, MI: multiple imputation, MM: mixed-effects model, NRI: non-responder imputation.

^{*}Mixed-effects model repeated measure and generalized linear mixed model assumption, **Mixed-effects model repeated measure.

Table G1.2 Key Features

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria			
Abrocitinib								
Phase III JADE MONO- 1 ^{35,75,155} Simpson 2020 Lancet + Simpson 2021 RAD Abstract	N= 387 Ages 12+ with moderate to severe atopic dermatitis DB, PC, RCT	Once-daily oral administration in one of the following doses for 12 weeks: • Abrocitinib 200 mg • Abrocitinib 100 mg • Placebo	Prohibited medication: concomitant topical therapies (corticosteroids, calcineurin inhibitors, tars, antibiotic creams, and topical antihistamines) •If receiving non-AD related concomitant medications, must be on stable regimen. •Prior drug/non-drug treatment, concomitant drug and non-drug treatment summarized according to CaPS	•Age: ≥ 12 years with minimum body weight of 40 kg •Diagnosis of atopic dermatitis (AD) for at ≥1 year and current status of moderate to severe disease (≥ the following scores: BSA 10%, IGA 3, EASI 16, Pruritus NRS severity 4 • Inability to tolerate topical AD treatments or require systemic treatments for AD control	•Unwilling to discontinue current AD medications prior to study or require treatment with prohibited medications during study •Prior treatment with JAK inhibitors •Other active non-AD skin diseases •Medical history including thrombocytopenia, coagulopathy, or platelet dysfunction, current or history of certain infections, cancer, lymphoproliferative disorders			
Phase III JADE MONO- 2 ^{36,75,156} Silverberg 2020 JAMA Dermatology	N=391 Ages 12+ with moderate to severe atopic dermatitis DB, PC, RCT	Once-daily oral administration in one of the following doses for 12 weeks: • Abrocitinib 200 mg • Abrocitinib 100 mg • Placebo	Permitted medication: Oral antihistamines and topical non-medicated emollients Prohibited medication: Concomitant use of topical (corticosteroids, calcineurin inhibitors, tars, antibiotic creams, or topical antihistamines) or systemic therapies for AD	• Age: ≥12 years with minimum body weight of 40 kg • Diagnosis of atopic dermatitis (AD) for at ≥1 year and current status of moderate to severe disease (≥ the following scores: BSA 10%, IGA 3, EASI 16, Pruritus NRS severity 4 • Recent history of inadequate response or inability to tolerate topical AD treatments or require systemic treatments for AD control	•Unwilling to discontinue current AD medications prior to study or require treatment with prohibited medications during study •Prior treatment with JAK inhibitors •Other active non-AD skin diseases •Medical history including thrombocytopenia, coagulopathy, or platelet dysfunction, current or history of certain infections, cancer, lymphoproliferative disorders			

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III	N=285	Once-daily oral	Permitted medication:	•Age: ≥12-17 years with	•Acute or chronic medical or
JADE	Ages 12-17 with	administration in	background topical therapy	minimum body weight of 40	laboratory abnormality that
TEEN ^{39,41,77,84}	moderate to	one of the		kg	may increase the risk
	severe atopic	following doses	Permitted medication: NR	Diagnosis of atopic	associated with study
Pfizer data on	dermatitis	for 12 weeks:		dermatitis (AD) for at ≥1 year	participation
file +				and current status of	 Unwilling to discontinue
Eichenfield	DB, PC, RCT	•Abrocitinib 200		moderate to severe disease (≥	current AD medications
2021 AAAI		mg		the following scores: BSA 10%,	prior to the study or require
Abstract +		•Abrocitinib 100		IGA 3, EASI 16, Pruritus NRS	treatment with prohibited
Eichenfield		mg		severity 4	medications during the
2021 RAD		Placebo			study
Abstract					 Prior treatment with JAK
					inhibitors
					Other active non-AD
					inflammatory skin diseases
					or conditions affecting skin
					 Medical history including
					thrombocytopenia,
					coagulopathy or platelet
					dysfunction, malignancies,
					current or history of certain
					infections,
					lymphoproliferative
					disorders, and other medical
					conditions at the discretion
					of the investigator
Phase III	N= 837	•Abrocitinib (200	Permitted/provided: non-	•18+ diagnosed with AD for ≥1	Other acute or chronic
JADE		mg) + placebo	medicated emollients at least	year and current status of	medical or psychiatric
COMPARE ^{37,39}	Adults 18+ with	Q2W (to Week	twice a day and medicated	moderate to severe disease (≥	condition including recent
	moderate to	16)→abrocitinib	topical therapy such as	the following scores: BSA 10%,	(within the past year) or
Bieber 2021	severe atopic	(200 mg) (Week	corticosteroids, calcineurin	IGA 3, EASI 16, Pruritus NRS	active suicidal
NEMJ + Pfizer	dermatitis	20)	inhibitors, or PDE4 inhibitors,	severity 4)	ideation/behavior
data on file		•Abrocitinib (100	as per protocol guidance, to	 Documented recent history 	Medical history including
		mg) + placebo	treat active lesions during	(within 6 months before	thrombocytopenia,
	DB, PC, RCT	Q2W (to Week	study.	screening) of inadequate	coagulopathy or platelet

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
		16) →abrocitinib (100 mg) (Week 20) • Dupilumab (300 mg; with a 600 mg loading dose at baseline) + placebo oncedaily to Week 16) → placebo oncedaily (Week 20) • Placebo + dupilumab Q2W (to Week 16) → abrocitinib (100 mg) (Week 20) • Placebo + dupilumab Q2W (to Week 16) → abrocitinib (200 mg) (Week 20) Placebo (to week 16) → placebo (week 20)	If receiving concomitant medications for any reason other than AD, must be on a stable regimen prior to Day 1 and through the duration of the study	response to treatment with medicated topical therapy for AD for at least 4 weeks, or who have required systemic therapies for control of their disease. • Must be willing and able to comply with standardized background topical therapy	dysfunction, Q wave interval abnormalities, current or history of certain infections, cancer, lymphoproliferative disorders •Other active nonAD inflammatory skin diseases or conditions affecting skin •Prior treatment with JAK inhibitors •Previous treatment with dupilumab •Unwilling to discontinue current AD medications prior to study or require treatment with prohibited medications during study
Phase III JADE EXTEND ^{76,107}	N=1116 Ages 12+ moderate to	•Abrocitinib 200- mg •Abrocitinib 100- mg	NR	 Patients ages 12+ and meets minimum body weight Must have completed full treatment period or the full 	Other acute or chronic medical or psychiatric condition including recent (within the past year) or
Reich 2021 Abstract and	severe AD			rescue treatment period of a qualifying Parent study OR	behavior or laboratory abnormality that may
Shi 2021 Abstract				must have completed the full open-label run-in period in B7451014 and did not meet	interfere with the study •Currently have active forms of other inflammatory

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
				the protocol-specified response criteria at Week 12 •Must avoid prolonged exposure to the sun, tanning booths, sun lamps or other ultraviolet light sources	skin diseases, i.e., not AD or have evidence of skin conditions (e.g., psoriasis, seborrheic dermatitis, Lupus) •Discontinued from treatment early in a qualifying Parent study OR triggered a discontinuation criterion at any point during the qualifying Parent study which in the opinion of the investigator, or sponsor, is an ongoing safety concern •Ongoing AE in the qualifying Parent study that is an ongoing safety concern
Phase IIb ^{40,157} Gooderham 2019	N= 267 Ages 18 to 75 with a clinical diagnosis of moderate to severe atopic dermatitis	Abrocitinib 10 mg Abrocitinib 30 mg Abrocitinib 100 mg Abrocitinib 200 mg Placebo	Permitted medication: oral antihistamines and nonmedicated emollient (CeraVe lotion [CeraVe]; or Aquaphor [Beiersdorf Inc]) and sunscreen (both provided by the sponsor) Prohibited: systemic or topical medication	Adults aged 18 to 75 years with a clinical diagnosis of moderate to severe AD (percentage of affected body surface area [%BSA] ≥10; Investigator's Global Assessment [IGA] score ≥3; and Eczema Area and Severity Index [EASI] score ≥12) for 1 year or more before day 1 of the study and inadequate response to topical medications (topical corticosteroids or topical calcineurin inhibitors) for 4 weeks or more (based on investigator's judgment) or inability to receive topical	Patients who had used topical corticosteroids or topical calcineurin inhibitors within 1 week of the first dose of study drug were excluded

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
				treatment within 12 months before the first dose of study drug because it was medically inadvisable	
			Baricitinib		
Phase III BREEZE- AD1 ^{42,108}	Adults 18+ with moderate to severe AD	Daily dose for 16 weeks:	Provided/required: emollient Prohibited: intra-articular	• Diagnosed with moderate to severe Atopic Dermatitis for ≥ 12 months	•History of other concomitant skin conditions, skin disease or eczema
Simpson 2020	DB, PC, RCT	Baricitinib 4 mg (High) Baricitinib 2 mg (Mid)	corticosteroid injection, parenteral corticosteroids, JAK inhibitor treatment, monoclonal antibody	 Inadequate response or intolerance to existing topical medications within 6 months of screening 	 herpeticum Currently experiencing a skin infection or illness that requires or is being treated
BJD		•Baricitinib mg (Low) •Placebo		Willing to discontinue certain treatments for eczema (such as systemic and topical treatments during a washout period) Agree to use emollients daily	with topical or systemic antibiotics or corticosteroids •Prior treatment of: oral JAK inhibitor, parenteral corticosteroids injection, or intra-articular corticosteroid injection, within 2 weeks prior to study entry or 6 weeks prior to randomization •Have high blood pressure •Had major surgery within the past 8 weeks •Have experienced any of the following within 12 weeks of screening: VTE, myocardial infarction (MI), unstable ischemic heart disease, stroke, heart failure.

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
					 Have a history of recurrent (≥ 2) VTE or are considered at high risk of VTE Have a history or presence of cardiovascular, respiratory, hepatic, liver, gastrointestinal, endocrine, hematological, neurological, lymphoproliferative disease or neuropsychiatric disorders Have a current or recent clinically serious viral, bacterial, fungal, or parasitic infection including herpes zoster, tuberculosis.

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III	Adults 18+ with	Daily dose for 16	Provided/required: emollient	Diagnosed with moderate to	History of other
BREEZE-	moderate to	weeks:	-	severe Atopic Dermatitis for ≥	concomitant skin conditions,
AD2 ^{42,109}	severe AD		Prohibited: intra-articular	12 months	skin disease or eczema
		Baricitinib 4 mg	corticosteroid injection,	Inadequate response or	herpeticum
Simpson 2020	DB, PC, RCT	(High)	parenteral corticosteroids, JAK	intolerance to existing topical	 Currently experiencing a
BJD		 Baricitinib 2 mg 	inhibitor treatment,	medications within 6 months	skin infection or illness that
		(Mid)	monoclonal antibody	of screening	requires or is being treated
		•Baricitinib 1 mg		Willing to discontinue	with topical or systemic
		(Low)		certain treatments for eczema	antibiotics or corticosteroids
		Placebo		(such as systemic and topical	•Prior treatment of: oral JAK
				treatments during a washout	inhibitor, parenteral
				period)	corticosteroids injection, or
				Agree to use emollients daily	intra-articular corticosteroid
					injection, within 2 weeks
					prior to study entry or 6
					weeks prior to
					randomization
					 Have high blood pressure
					 Had major surgery within
					the past 8 weeks
					 Have experienced any of
					the following within 12
					weeks of screening: VTE,
					myocardial infarction (MI),
					unstable ischemic heart
					disease, stroke, heart
					failure.
					 Have a history of recurrent
					(≥ 2) VTE or are considered
					at high risk of VTE
					Have a history or presence
					of cardiovascular,
					respiratory, hepatic, liver,
					gastrointestinal, endocrine,
					hematological, neurological,

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
					lymphoproliferative disease
					or neuropsychiatric disorders
					•Have a current or recent
					clinically serious viral,
					bacterial, fungal, or parasi infection including herpes
					zoster, tuberculosis.

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III	Adults 18+ with	•Baricitinib 4 mg	Not reported	Have completed the final	Had investigational
BREEZE-AD3 ^{43,44}	moderate to	 Baricitinib 2 mg 		active treatment visit for an	product permanently
	severe AD	Placebo		originating study eligible to	discontinued at any time
Eli Lilly Oct 31,				enroll participants directly into	during a previous baricitinib
2020 (Press				study BREEZE-AD3	study.
release) + Eli	DB, PC, RCT				Had temporary
Lilly data on file				OR	investigational product
					interruption continue at the
				Meet criteria for	final study visit of a previous
				NCT03334396 or	baricitinib study and, in the
				NCT03334422.	opinion of the investigator,
					this poses an unacceptable
					risk for the participant's
					participation in the study.

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III	N=440	Daily dose for 16	Not reported	Diagnosed with moderate to	Currently experiencing or
BREEZE-		weeks:	·	severe Atopic Dermatitis for	have a history of other
AD5 ^{44,45,49}	Adults 18+ with			≥12 months, including all of	concomitant skin conditions
	moderate to	Baricitinib 2 mg		the following:	(e.g., psoriasis or lupus
Simpson 2021	severe AD	(Mid)		• EASI score ≥16	erythematosus), or a history
JAAD + Eli Lilly		Baricitinib 1 mg		 IGA score of ≥3 	of erythrodermic,
data on file	DB, PC, RCT	(Low)		• ≥10% of BSA involvement	refractory, or unstable skin
		Placebo		 Inadequate response or 	disease that requires
				intolerance to existing topical	frequent hospitalizations
				medications within 6 months	and/or intravenous
				of screening	treatment for skin infections
				Willing to discontinue	History of eczema
				certain treatments for eczema	herpeticum within 12
				(such as systemic and topical	months, and/or a history of
				treatments during a washout	2 or more episode of
				period)	eczema herpeticum in the
				Agree to use emollients daily	past
					Participants who are
					currently experiencing a skin
					infection that requires
					treatment, or is currently
					being treated, with topical
					or systemic antibiotics
					Any serious illness that is
					anticipated to require the
					use of systemic
					corticosteroids or otherwise
					interfere with study
					participation or require
					active frequent monitoring
					(e.g., unstable chronic
					asthma)
					Treated with the following
					therapies:
					 Monoclonal antibody

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
					for less than 5 half-lives
					before randomization
					 Received prior
					treatment with any oral JAK
					inhibitor less than 4 weeks
					before randomization
					 Received any parenteral
					corticosteroid administered
					by IM or IV injection within
					6 weeks of planned
					randomization or are
					anticipated to require
					parenteral injection of
					corticosteroids during the
					study
					 Have had an intra-
					articular corticosteroid
					injection within 6 weeks of
					planned randomization
					 Probenecid at the time
					of randomization that
					cannot be discontinued for
					the duration of the study
					 Have high blood pressure
					 Had major surgery within
					the past 8 weeks
					 Have experienced any of
					the following within 12
					weeks of screening: MI,
					unstable ischemic heart
					disease, stroke, or New York
					Heart Association Stage
					III/IV heart failure
					Have a history of VTE, or
					are considered at high risk

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
					for VTE • Have a history or presence of cardiovascular, respiratory, hepatic, chronic liver disease gastrointestinal, endocrine, hematological, neurological, lymphoproliferative disease or neuropsychiatric disorders or any other serious and/or unstable illness • Have a current or recent clinically serious viral, bacterial, fungal, or parasitic infection including herpes zoster, tuberculosis.

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III	Adults 18+ with	Baricitinib 2 mg	TCS permitted	Have not participated in a	Are currently experiencing
BREEZE-AD682	moderate to	QD + TCS	·	Study JAIW (NCT03435081)	or have a history of other
	severe AD who			Have moderate to severe	concomitant skin conditions
Simpson 2021	completed the			AD, including all of the	(e.g., psoriasis or lupus
RAD Abstract	first 16 weeks of			following: EASI score ≥16, IGA	erythematosus)
	BREEZE-AD5			score of ≥3, 10%- 50% BSA	•A history of eczema
				involvement	herpeticum within 12
				Have had inadequate	months
				response or intolerance to	•Skin infection requiring
				existing topical (applied to the	treatment with topical or
				skin) medications within 6	systemic antibiotics.
				months preceding screening.	•Have been treated with the
				 Are willing to discontinue 	following therapies:
				certain treatments for eczema	monoclonal antibody for
				(such as systemic and topical	less than 5 half-lives before
				treatments)	randomization, any oral JAK
				 Agree to use emollients 	inhibitor less than 4 weeks
				daily.	before randomization, any
					parenteral corticosteroid
					administered by
					intramuscular or
					intravenous injection within
					6 weeks of planned
					randomization
					 Have high blood pressure
					characterized by a repeated
					systolic blood pressure >160
					millimeters of mercury (mm
					Hg) or diastolic blood
					pressure >100 mm Hg.
					Have experienced any of
					the following within 12
					weeks of screening:
					myocardial infarction (MI),
					unstable ischemic heart

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
Phase III BREEZE-AD7 Reich 2020 ^{46,47} Reich 2020 JAMA	≥18 years of age, moderate-to- severe atopic dermatitis DB, PC, RCT	•Baricitinib 4 mg QD + TCS •Baricitinib 2 mg QD + TCS •Placebo QD + TCS	All patients received moderate- and/or low potency TCS (such as 0.1% triamcinolone cream and 2.5% hydrocortisone ointment, respectively) for active lesions; topical calcineurin inhibitors and/or crisaborole, in countries where approved, could be used in place of TCS, with guidance to limit use to areas considered inadvisable for TCS	≥18 years of age, moderate- to-severe atopic dermatitis (IGA 3 or 4), inadequately controlled by topical treatment or medically inadvisable, AD ≥1 year	disease, stroke, or NYHA Stage III/IV heart failure •Have a history of VTE, cardiovascular, respiratory, hepatic, gastrointestinal, endocrine, hematological, neurological, lymphoproliferative disease or neuropsychiatric disorders •Have a current or recent clinically serious viral, bacterial, fungal, or parasitic infection including herpes zoster, tuberculosis ~VTE or MACE w/I 12 weeks of screening; history of recurrent or high risk VTE; serious comorbid condition requiring systemic corticosteroids; history of alcohol or drug abuse; laboratory abnormalities
Phase II ⁴⁸	≥18 years of age, moderate-to-	•Baricitinib 4 mg QD + TCS	Triamcinolone was used throughout the study according	≥18 years of age; moderate- to-severe atopic dermatitis;	History of TB, HIV, HepC, HepB; Pregnant or nursing
Guttmann- Yassky 2018 JAAD	severe atopic dermatitis	•Baricitinib 2 mg QD + TCS •Placebo QD +	to the labeling or as recommended by the investigator	EASI ≥12; BSA ≥10%; disease duration ≥2 years; Inadequate response to emollients, TCS,	females; participants not agreeing to use adequate contraception; serious
	DB, PC, RCT	TCS		systemic corticosteroids, or immunosuppressants; study conducted in US and Japan	comorbid condition that could interfere with study

Trial	Patient Population	Interventions	Concomitant Therapy	Inclusion Criteria	Exclusion Criteria
					participation; certain vaccines

	Tralokinumab							
Phase III	N= 802	Pre-initial	Provided: patients	•Age 18+	Active dermatologic conditions that may			
ECZTRA 1 ^{63,65}		treatment (day	instructed to use emollient	 Diagnosis of AD for 	confound the diagnosis of AD.			
	Adults 18+ with	0):	twice daily	≥1 year	•Use of tanning beds or phototherapy 6			
Wollenburg	moderate to	 Tralokinumab 		 Subjects who have 	weeks prior to randomization.			
2020 British	severe atopic	600 mg loading		a recent history of	Treatment with systemic			
Journal of	dermatitis	dose		inadequate	immunosuppressive/immunomodulating			
Dermatology				response to	drugs and/or systemic corticosteroid within			
+ LeoPharma		Initial treatment		treatment with	4 weeks prior to randomization.			
data on file		period (16		topical medications	•Treatment with TCS and/or TCI within 2			
		weeks):		or for whom topical	weeks prior to randomization.			
		 Tralokinumab 		treatments are	•Active skin infection within 1 week prior to			
		300 mg injection		otherwise medically	randomization.			
		(2 injections of		inadvisable.	 Clinically significant infection 4 weeks prior 			
		150 mg each)		•AD involvement of	to randomization.			
		Q2W		≥10% body surface	•A helminth parasitic infection within 6			
		 Placebo Q2W 		area at screening	months prior study entry.			
				and baseline.	•Tuberculosis requiring treatment within			
		Maintenance		•EASI≥12 screening,	the 12 months prior to screening.			
		treatment period		≥16 at baseline	Known primary immunodeficiency			
		(36 weeks):		•IGA≥3	disorder.			
		 Tralokinumab 		 Applied a stable 	Positive HepB or HepC			
		300 mg injection		dose of emollient				
		Q2W		twice daily for at				
		 Tralokinumab 		least 14 days before				
		300 mg injection		randomization				
		Q4W						
		 Placebo 						

Phase III	N= 794	Pre-initial	Provided: patients	•Age 18+	Active dermatologic conditions that may
ECZTRA 2 ^{63,65}		treatment (day	instructed to use emollient	•Diagnosis of AD for	confound the diagnosis of AD.
	Adults 18+ with	0):	twice daily	≥1 year	 Use of tanning beds or phototherapy 6
Wollenburg	moderate to	 tralokinumab 		•Subjects who have	weeks prior to randomization.
2020 British	severe atopic	600 mg loading		a recent history of	Treatment with systemic
Journal of	dermatitis	dose		inadequate	immunosuppressive/immunomodulating
Dermatology				response to	drugs and/or systemic corticosteroid within
+ LeoPharma		Initial treatment		treatment with	4 weeks prior to randomization.
data on file	DB, PC, RCT	period (16		topical medications	•Treatment with TCS and/or TCI within 2
		weeks):		or for whom topical	weeks prior to randomization.
		 tralokinumab 		treatments are	Active skin infection within 1 week prior to
		300 mg injection		otherwise medically	randomization.
		(2 injections of		inadvisable.	Clinically significant infection 4 weeks prior
		150 mg each)		•AD involvement of	to randomization.
		Q2W		≥10% body surface	A helminth parasitic infection within 6
		 placebo Q2W 		area at screening	months prior study entry.
				and baseline.	•Tuberculosis requiring treatment within
		Maintenance		•EASI≥12 screening,	the 12 months prior to screening.
		treatment period		≥16 at baseline	Known primary immunodeficiency
		(36 weeks):		•IGA≥3	disorder.
		 tralokinumab 		 Applied a stable 	Positive HepB or HepC
		300 mg injection		dose of emollient	
		Q2W		twice daily for at	
		 tralokinumab 		least 14 days before	
		300 mg injection		randomization	
		Q4W			
		• placebo			

Phase III	N=380	Pre-initial	permitted/provided: TCS,	•Age 18+	•Subjects for whom TCS are medically
ECZTRA 3		treatment (day	emollient	Diagnosis of AD as	inadvisable
(with TCS) ^{64,65}	Adults 18+ with	0):		defined by the	 Active dermatologic conditions that may
	moderate-to-	 tralokinumab 		Hanifin and Rajka	confound AD diagnosis
Silverberg	severe atopic	600 mg injection		(1980) criteria for	 Use of tanning beds or phototherapy
2020 British	dermatitis			AD.	within 6 weeks prior to randomization.
Journal of		Initial treatment		History of AD for	•Treatment with systemic
Dermatology	DB, PC, RCT	period (16		≥1 year.	immunosuppressive/immunomodulating
+ LeoPharma		weeks)		 Subjects who have 	drugs or systemic corticosteroid within 4
data on file		tralokinumab		a recent history of	weeks prior to randomization.
		300 mg injection		inadequate	•Treatment with TCS, topical calcineurin
		Q2W + optional		response to	inhibitors (TCI), or topical
		TCS		treatment with	phosphodiesterase 4 (PDE-4) inhibitor
		•placebo Q2W +		topical medications.	within 2 weeks prior to randomization.
		optional TCS		•AD involvement of	•Receipt of any marketed biological therapy
				≥10% body surface	including dupilumab or investigational
		Maintenance		area at screening	biologic agents.
		treatment period		and baseline.	•Active skin infection within 1 week prior to
		(32 weeks)		 Stable dose of 	randomization.
		tralokinumab		emollient twice	 Helminth parasitic infection within 6
		300 mg injection		daily (or more, as	months prior to study start
		Q2W + optional		needed) for at least	•Tuberculosis requiring treatment within
		TCS		14 days before	the 12 months prior to screening.
		tralokinumab		randomization.	Known primary immunodeficiency
		300 mg injection			disorder.
		Q4W + optional			
		TCS			
		•placebo Q2W +			
		TCS			

Phase III	N=1175	Tralokinumab	Optional TCS	Completed the	More than 20 weeks have elapsed since
ECZTEND ⁷⁸		300 mg Q2W		treatment period(s)	the subject received the last injection of
	Patients 18+ who			of one of the parent	investigational medicinal product (IMP) in
Blauvelt 2021	participated in			trials: LP0162-1325,	the parent trial
RAD Abstract	previous			-1326, -1339, -1341	Subjects who, during the parent trial,
	tralokinumab			or -1342	developed an AE or SAE related to
	clinical trials			Able and willing to	tralokinumab that led to temporary
				self-administer	discontinuation of trial treatment
				tralokinumab	Treatment with systemic
				treatment (or have	immunosuppressive/immunomodulating
				it administered by a	drugs and/or systemic corticosteroid within
				caregiver) at home	4 weeks prior to baseline
				after the initial 3	Treatment with topical phosphodiesterase
				injection visits at	4 inhibitors within 2 weeks prior to baseline
				the trial site	A helminth parasitic infection
				Stable dose of	Tuberculosis requiring treatment within 12
				emollient twice	months prior to screening
				daily (or more, as	
				needed) for at least	
				14 days before	
				baseline	
			Upadacitinib		
Phase III	N= 847	Week 1-16:	Prohibited medications: UV	Active moderate	Prior exposure to any JAK inhibitor
MEASURE UP		Upadacitinib 30	light therapy, JAK inhibitors,	to severe atopic	Unable or unwilling to discontinue current
1 ^{71,80}	Ages 12-75 years	mg	systemic or topical, bleach	dermatitis defined	AD treatments prior to study
	with moderate to	Upadacitinib 15	baths (if more than	by EASI, IGA, BSA,	Requirement of prohibited medications
Guttman-	severe AD	mg	2x/week during study),	and pruritus	during the study
Yassky 2021		 Placebo 	topical treatments for AD	Candidate for	Other active skin diseases/infections
Lancet +	DB, PC, RCT			systemic therapy or	requiring systemic treatment or would
Simpson 2021		After Week 16:		have recently	interfere with appropriate assessment of
AAD VMX		Upadacitinib 30		required systemic	atopic dermatitis lesions
Abstract		mg		therapy for atopic	
		Upadacitinib 15		dermatitis	
		mg			

Phase III	N= 836	Week 1-16:	Prohibited medications: UV	Active moderate	Prior exposure to any JAK inhibitor
MEASURE UP		Upadacitinib 30	light therapy, JAK inhibitors,	to severe atopic	Unable or unwilling to discontinue current
271,80	Ages 12-75 years	mg	systemic or topical, bleach	dermatitis defined	AD treatments prior to study
	with moderate to	Upadacitinib 15	baths (if more than	by EASI, IGA, BSA,	Requirement of prohibited medications
Guttman-	severe AD	mg	2x/week during study),	and pruritus	during the study
Yassky 2021		• Placebo	topical treatments for AD	 Candidate for 	Other active skin diseases/infections
Lancet +	DB, PC, RCT			systemic therapy or	requiring systemic treatment or would
Simpson 2021		After Week 16:		have recently	interfere with appropriate assessment of
AAD VMX		Upadacitinib 30		required systemic	atopic dermatitis lesions
Abstract		mg		therapy for atopic	
		Upadacitinib 15		dermatitis	
		mg			
Phase III	N~901	Week 1-16	TCS	 Active moderate 	Prior exposure to any JAK inhibitor
AD-UP (with		Upadacitinib 30		to severe atopic	Unable or unwilling to discontinue current
TCS) ^{71,81}	Ages 12-75 with	mg + topical	prohibited meds, no details	dermatitis defined	AD treatments prior to study
	moderate to	corticosteroids		by EASI, IGA, BSA,	Requirement of prohibited medications
Reich 2021	severe AD	(TCS)		and pruritus	during the study
Lancet +		Upadacitinib 15		 Candidate for 	Other active skin diseases/infections
Simpson 2021	DB, PC, RCT	mg + TCS		systemic therapy or	requiring systemic treatment or would
AAD VMX		 Placebo + TCS 		have recently	interfere with appropriate assessment of
Abstract				required systemic	atopic dermatitis lesions
		After Week 16:		therapy for atopic	
		Upadacitinib 30		dermatitis	
		mg + TCS		Able to tolerate	
		Upadacitinib 15		topical	
		mg + TCS		corticosteroids for	
				atopic dermatitis	
				lesions	

Phase IIIb Heads Up ^{70,83}	N= 692	Dose for 24 weeks	Permitted: topical emollients	Patients 18 and older with	Participant has prior exposure to Janus Kinase (JAK) inhibitor.
Heads Op	Adults 18 and	Arm 1	emoments	moderate to severe	Participant has prior exposure to dupilumab.
Blauvelt 2021 JAMA	older with	Upadacitinib 30 mg daily (oral)	Prohibited Medications: JAK inhibitors, prior	AD	Participant is unable or unwilling to discontinue current AD treatments prior to
Dermatology	severe AD	Placebo	dupilumab use, TCS, TCIs	Participant has	the study.
+ AbbVie data	Severe AD	1 lacebo	dupitutitus use, res, reis	active moderate to	Participant has requirement of prohibited
on file	MC, RCT, DB, DD,	Arm 2		severe atopic	medications during the study.
	AC	Dupilumab 300		dermatitis (AD)	Participant has other active skin diseases or
		mg every other		defined by Eczema	skin infections requiring systemic treatment
		week		Area and Severity	or would interfere with appropriate
		(subcutaneous) Placebo		Index (EASI), Investigator's Global	assessment of AD lesions. Female participant who is pregnant,
		Flacebo		Assessment (IGA),	breastfeeding, or considering pregnancy
				Body Surface Area	during the study.
				(BSA) and pruritus.	
				Participant is a	
				candidate for	
				systemic therapy or	
				have recently	
				required systemic	
60 159			-	therapy for AD.	
Phase IIb ^{69,158}	N=167	Week 1-16 (period 1):	Permitted: emollient, orally administered antibiotics for	 Atopic dermatitis with a diagnosis 	Prior exposure to any systemic or topical Janus kinase (JAK) inhibitor (including but
Guttman-	Ages 18-75 years	•upadacitinib 30	superficial skin infections	confirmed by a	not limited to tofacitinib, baricitinib,
Yassky 2020	with moderate to	mg QD	Superficial Skill infections	dermatologist and	ruxolitinib, and filgotinib).
Allergy and	severe AD	•upadacitinib 15	Prohibited medications:	onset of symptoms	•Treatment with topical corticosteroids
Immunology		mg QD	Concomitant medications	at least 1 year prior	(TCS), topical calcineurin inhibitors (TCI),
+ Reich 2021	DB, PC, RCT	•upadacitinib 7.5	for the treatment of AD,	to Baseline.	prescription moisturizers or moisturizers
RAD Abstract		mg QD	JAK inhibitors (other than	Moderate to	containing additives such as ceramide,
		•placebo	upadacitinib) and other	severe atopic	hyaluronic acid, urea, or filaggrin within 10
		Week 16-88	non-biologic systemic treatments for AD; all	dermatitis defined by EASI≥16,	days prior to the Baseline visit. •Prior exposure to dupilumab or exposure
		(period 2 -	biologic therapies,	BSA≥10% and IGA	to systemic therapies for AD including
		rerandomization	corticosteroids,	score≥ 3 at the	corticosteroids, methotrexate, cyclosporine,
		stratified by EASI	phototherapy, extensive	Baseline visit.	azathioprine, phosphodiesterase type 4

75 response at	light exposure that could	•Documented	(PDE4)-inhibitors and mycophenolate
week 16):	have affected study	history (within 1	mofetil within 4 weeks prior to Baseline.
•upadacitinib 30	7	year prior to the	Prior exposure to any investigational
mg QD	therapies, investigational	screening visit) of	systemic treatment within 30 days or 5 half-
•upadacitinib 15	drugs, live vaccines,	inadequate	lives (whichever is longer) of the Baseline
mg QD	cannabis, and strong	response to	visit
•upadacitinib 7.5	inducers and inhibitors of	treatment with	
mg QD	cytochrome P450 3A; and	topical	
•placebo	traditional Chinese	corticosteroids	
	medicine	(TCS), or topical	
		calcineurin	
		inhibitors (TCI), or	
		for whom topical	
		treatments are	
		otherwise medically	
		inadvisable (e.g.,	
		because of	
		important side	
		effects or safety	
		risks).	
		 Twice daily use of 	
		an additive-free,	
		bland emollient for	
		at least 7 days prior	
		to Baseline.	

	Dupilumab								
Phase III LIBERTY AD SOLO 1 ⁵¹ Simpson 2016 NEMJ	≥18 years of age, moderate-to-severe atopic dermatitis DB, PC, RCT	Dosing until week 16: Dupilumab monotherapy 300 mg/wk, s.c.(n=223) dupilumab 300 mg s.c. every other week alternating with placebo (n=224) Placebo (n=224)	Prohibited: Prohibited concomitant medications included topical glucocorticoids and calcineurin inhibitors, immunomodulating biologic agents, systemic glucocorticoids, and nonsteroidal systemic immunosuppressants. Also prohibited procedures: Phototherapy, tanning bed or booth, and major elective surgeries Permitted/allowed: Concomitant topical glucocorticoids and calcineurin inhibitors were allowed only as rescue therapy	≥18 years of age, moderate-to-severe atopic dermatitis (IGA 3 or 4), inadequately controlled by topical treatment or medically inadvisable, AD ≥3 years	Treatment with an investigative drug within 8 weeks or within 5 half-lives Treatment with immunosuppressive/immunomodulatory drugs or phototherapy for atopic dermatitis within 4 weeks of baseline Treatment with topical corticosteroids or topical calcineurin inhibitors within 1 week of baseline Regular use (>2 visits per week) of a tanning booth/parlor within 4 weeks of the baseline visit Planned or anticipated use of any prohibited medications and procedures during study treatment Known or suspected history of immunosuppression, including history of invasive opportunistic infections, HIV, HepC or presence of any condition listed as criteria for discontinuation of drug and history of malignancies Presence of skin comorbidities that may interfere with study assessments				

Phase III	≥18 years of age,	Dosing until	Prohibited: Prohibited	≥18 years of age,	same as SOLO 1
LIBERTY AD	moderate-to-	week 16:	concomitant medications	moderate-to-	
SOLO 2 ⁵¹	severe atopic		included	severe atopic	
	dermatitis	Dupilumab	topical glucocorticoids and	dermatitis (IGA 3 or	
Simpson		monotherapy	calcineurin inhibitors,	4), inadequately	
2016 NEMJ	DB, PC, RCT	300 mg/wk,	immunomodulating biologic	controlled by	
		s.c.(n=239)	agents, systemic	topical treatment	
		Dupilumab 300	glucocorticoids, and	or medically	
		mg s.c. every	nonsteroidal systemic	inadvisable, AD ≥3	
		other week	immunosuppressants.	years	
		alternating with			
		placebo	Also prohibited procedures:		
		(n=233)	Phototherapy, tanning bed		
		Placebo (n=236)	or booth, and major elective		
			surgeries		
			Permitted/allowed:		
			Concomitant topical		
			glucocorticoids and		
			calcineurin inhibitors were		
			allowed only as rescue		
			therapy		

Phase III	≥18 years of age,	Day 1 (Loading	provided during study: TCS	Chronic atopic	Participation in a prior dupilumab clinical
LIBERTY AD	moderate-to-	dose)	(medium/low potency) w/	dermatitis (AD)	trial
CHRONOS ⁵⁰	severe atopic	•Dupilumab 600	or w/o TCIs (where	present for 3+	•Important side effects of topical medication
	dermatitis	mg	inadvisable for TCS)	years before	(e.g., intolerance to treatment,
Blauvelt		•placebo	,	screening	hypersensitivity reactions, significant skin
2017 Lancet	DB, PC, RCT		Permitted concomitant	Documented	atrophy, systemic effects)
	, ,	Day 1-Week 16	meds: any medications	recent history	•Used any of these treatments within 4 weeks
		•Dupilumab 300	other than those that were	(within 6 months	before baseline, or condition likely to require
		mg QW + TCS	prohibited	before the	treatment during first 2 weeks of study
		•Dupilumab 300	·	screening visit) of	treatment:
		mg Q2W + TCS		inadequate	Immunosuppressive/immunomodulating
		•Placebo QW +	Prohibited concomitant	response to a	drugs (e.g., systemic steroids, cyclosporine,
		TCS	medications: live	sufficient course of	mycophenolate-mofetil, Janus kinase
			(attenuated) vaccine,	outpatient	inhibitors, IFN-γ, azathioprine, methotrexate,
			immunomodulating	treatment with	etc., Phototherapy for AD
			biologics, investigational	topical AD meds	•Treatment with a live (attenuated) vaccine
			drugs, wet wraps, any omed	•IGA score ≥3, on	within 12 weeks before the baseline visit
			for AD interfering with	the IGA scale of 0-	History or current positive HIV
			efficacy outcomes or affect	4, BSA affected	Positive HepB or HepC antibody at the
			evaluation for AD severity,	≥10%, EASI score of	screening visit
			major elective surgical	≥16, PP-NRS	Active or acute infection requiring systemic
			procedures, or tanning in a	average score ≥3	treatment within 2 weeks before baseline visit
			bed/booth.	•Applied	Known or suspected history of
				moisturizers at	immunosuppression
				least twice daily for	
				the 7 days before	
				randomization	
Phase III	N= 422 re-	Re-randomized	Patients were required to	Received	Did not completed SOLO study or did not
AD SOLO-	randomized	2:1:1:1	apply moisturizers 2 or	dupilumab in the	achieve primary endpoint.
CONTINUE ⁵⁴	patients from		more times daily	SOLO studies and	
	SOLO to SOLO-	Original regimen	throughout the study.	achieved IGA 0/1	
Worm 2019	CONTINUE	(300 mg QW or		or EASI75 at week	
JAMA		Q2W)		16.	
	Dupilumab-	or			
	treated patients	Less frequency			
	who has achieved	(300 mg Q4W or			
	IGA score of 0 or	Q8W)			

	1 or 75% or greater improvement I EASI at week 16 during the SOLO studies. DB, PC, RCT	or Placebo			
Phase IIb Thaci 2016 ^{56,57} Thaci 2016 Lancet + Simpson 2016 JAAD	18 and older with moderate to severe atopic dermatitis N= 380 DB, PC, RCT, dose ranging	Dupilumab 300 mg once a week (n = 63) Dupilumab 300 mg every 2 weeks (n = 64) Dupilumab 200 mg every 2 weeks (n = 61) Dupilumab 300 mg every 4 weeks (n = 65) Dupilumab 100 mg every 4 weeks (n = 65) Placebo once a week (n = 61)	Prohibited concomitant medications: topical calcineurin inhibitors, topical corticosteroids, prescription moisturizers or moisturizers containing additives such as ceramide, hyaluronic acid, urea, or filaggrin, systemic corticosteroids, systemic treatment for AD with an immunosuppressive /immunomodulating agent (e.g., cyclosporin, mycophenolate-mofetil, azathioprine, methotrexate, interferon-gamma, or other biologics); allergen immunotherapy; live (attenuated vaccine); or investigational drug other than dupilumab.	adults (aged ≥18 years) diagnosed with moderate-to-severe atopic dermatitis for at least 3 years not adequately controlled by topical treatments, or for whom topical treatment was inadvisable, Eczema Area and Severity Index (EASI), score 12 or higher at screening and 16 or higher at baseline; Investigator's Global Assessment (IGA) score of 3 or higher at screening and baseline; atopic dermatitis involvement of 10% or more of body surface area	previous treatment with dupilumab; active acute or chronic infections; use of topical treatments for atopic dermatitis (other than bland emollients) within 1 week of baseline; systemic immunosuppressive or immunomodulating drugs within 4 weeks of baseline; or significant comorbidities or laboratory abnormalities

		at screening and baseline	

AC: active controlled, AD: atopic dermatitis, AE: adverse event, BSA: body surface area, CD19: Cluster of Differentiation 19, DB: double-blind, DD: double dummy, HepB: hepatitis B, HepC: hepatitis C, HIV: human immunodeficiency virus, IFN-γ: interferon gamma, IMP: investigational medicinal product, kg: kilogram, JAK: Janus kinase, LT: long-term, MACE: major adverse cardiovascular event, MC: multi-center, mg: milligram, MI: myocardial infarction n: number, mm Hg: millimeter of mercury, N: total number, NR: not reported, NRS: numerical rating scale, NYHA: New York Heart Association Functional Classification, OL: open-label, OLE: open-label extension, PC: placebo-controlled, PDE4: Phosphodiesterase-4, QD: once daily, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, RCT: randomized control trial, s.c.: subcutaneous, TB: tuberculosis, TCI: topical calcineurin inhibitors, TCS: topical corticosteroids, VTE: venous thromboembolism.

Table G1.3. Baseline Characteristics I 35-37,39,40,42,44-48,50,51,54,56,63,64,67,69,76-78,80-84,107

			Age (years)	M	ale	w	hite		e duration	Dis	sease Sev	verity, n (%)	
Study Name	Arms	N						Т		ears)	Mod	erate	Sev	vere
_			mean	SD	n	%	n	%	Mean	SD	n	%	n	%
		_			1	Abrocit	inib							
JADE MONO-	PBO	77	31.5	14.4	49	64	62	81	22.5	14.4	46	60	31	40
1	ABRO 100 mg	156	32.6	15.4	90	58	113	72	24.9	16.1	92	59	64	41
	ABRO 200 mg	154	33	17.4	81	53	104	68	22.7	14.5	91	59	63	41
	РВО	78	33.4	13.8	47	60.3	40	51.3	21.7	14.3	52	66.7	26	33.3
JADE MONO-	ABRO 100 mg	158	37.4	15.8	94	59.5	101	63.9	21.1	14.8	107	67.7	51	32.3
2	ABRO 200 mg	155	33.5	14.7	88	56.8	91	58.7	20.5	14.8	106	68.4	49	31.6
	Overall	391	35.1	15.1	229	58.6	232	59.3	21	14.7	265	67.8	126	32.2
	РВО	96	Median: 14	IQR: 13.5 to 16.5	44	45.8	56.0	58.3	10.5	4.8	57	59.4	39	40.6
JADE TEEN	ABRO 100 mg	95	Median: 16	IQR: 14 to 17	45	47.4	52.0	54.7	9.8	5.4	57	60	38	40
	ABRO 200 mg	94	Median: 15	IQR: 13 to 16	56	59.6	52.0	55.3	9.7	5.3	61	64.9	33	35.1
	Overall	285	14.9		145	50.9	160	56.1						
	PBO	131	37.4	15.2	77	58.8	87	66.4	21.4	14.4	88	67.2	43	32.8
	ABRO 100 mg	238	37.3	14.8	120	50.4	182	76.5	22.7	16.3	153	64.3	85	35.7
JADE COMPARE	ABRO 200 mg	226	38.8	14.5	104	46	161	71.2	23.4	15.6	138	61.1	88	38.9
COMITANL	DUP 300 mg	242	37.1	14.6	108	44.6	176	72.7	22.8	14.8	162	66.9	80	33.1
	Total	837	37.7	14.7	409	48.9	606	72.4	22.7	15.4	541	64.6	296	35.4
JADE EXTEND	ABRO 100 mg	595	Median: 32	Range: 12-83	340	57.1	NR	NR	22.7	15.2	384	64.5	211	35.5
Subgroup 1 [†]	ABRO 200 mg	521	Median: 32	Range: 12-80	277	53.2	NR	NR	22.3	15	322	61.8	199	38.2
JADE EXTEND	ABRO 100 mg	130	NR	NR	NR	NR	NR	NR	24.2	15	87	66.9	43	33.1
Subgroup 2 [‡]	ABRO 200 mg	73	NR	NR	NR	NR	NR	NR	23.6	15.6	47	64.4	26	35.6

			Age (years)	М	ale	w	hite		e duration	Dis	sease Sev	erity, n	(%)
Study Name	Arms	N	7.80 (years,		u.c	•		(у	rears)	Mod	lerate	Se	vere
			mean	SD	n	%	n	%	Mean	SD	n	%	n	%
Dhara III	РВО	56	42.6	15.1	21	37.5	40	71.4	Median: 25.6	Range: 1.1 to 67.1	34	61.8	21	38.2
Phase IIb Gooderham 2019	ABRO 100 mg	56	41.1	15.6	31	55.4	40	71.4	Median: 23.8	Range: 1.1 to 66.7	29	52.7	26	47.3
2019	ABRO 200 mg	55	38.7	17.6	28	50.9	37	67.3	Median 19.6	Range: 1.9 to 68.8	34	63	20	37
						Bariciti	nib							
	РВО	249	35	12.6	148	59.4	147	59.5	26	15.5	NR	NR	105	42.2
DDEE7E AD1	BARI 1 mg	127	36	12.4	78	61.4	74	58.3	27	14.9	NR	NR	53	41.7
BREEZE-AD1	BARI 2 mg	123	35	13.7	82	66.7	75	61	25	14.6	NR	NR	52	42.3
	BARI 4 mg	125	37	12.9	83	66.4	70	56.5	25	14.9	NR	NR	51	40.8
	РВО	244	35	13	154	63.1	169	69.3	25	13.9	NR	NR	121	49.6
DDEE3E AD3	BARI 1 mg	125	33	10	80	64	85	68	24	12.7	NR	NR	63	50.8
BREEZE-AD2	BARI 2 mg	123	36	13.2	65	52.8	85	69.1	24	13.8	NR	NR	62	50.4
	BARI 4 mg	123	34	14.1	82	66.7	82	66.7	23	14.8	NR	NR	63	51.2
BREEZE-AD3 (LTE)	BARI 2 mg						NR	NR	NR	NR				
	РВО	147	39	17	80	54	80	55	23	17	86	59	61	41
BREEZE-AD5	BARI 1 mg	147	40	17	75	51	86	59	24	17	85	58	62	42
	BARI 2 mg	146	40	15	69	47	85	58	24	16	85	58	61	42
BREEZE-AD6	BARI 2 mg	146	39.7	15	69	47.3	85	58.2	23.9	15.9	85	58.2	61	41.8
	PBO + TCS	109	33.7	13.2	71	65	46	42	22	12.2	NR	NR	48*	44
BREEZE-AD7	BARI 2 mg + TCS	109	33.8	12.8	70	64	50	46	24.6	14.8	NR	NR	50	46
	BARI 4 mg + TCS	111	33.9	11.4	75	68	54	49	25.5	13.2	NR	NR	50	45
Phase II	PBO + TCS	49	Median: 35	IQR: 28.0 to 48.0	24	49	23	47	Median: 17.7	IQR: 7.3 to 29.5	NR	NR	NR	NR
Guttman- Yassky 2018	BARI 2 mg + TCS	37	Median: 42	IQR: 26.0 to 52.0	22	59	20	54	Median: 26.4	IQR: 18.3 to 40.5	NR	NR	NR	NR

			Δσε (years)	M	ale	w	hite	Diseas	e duration	Dis	sease Sev	erity, n	(%)
Study Name	Arms	N	7,50 (years,		uic		····c	(у	ears)	Mod	lerate	Sev	vere
			mean	SD	n	%	n	%	Mean	SD	n	%	n	%
	BARI 4 mg + TCS	38	Median: 32.5	IQR: 26.0 to 48.0	22	58	18	47	Median: 22.0	IQR: 6.4 to 30.7	NR	NR	NR	NR
		•			Т	ralokinu	ımab							
ECZTRA 1	РВО	199	Median: 37.0	IQR: 26.0 to 49.0	123	61.8	138	69.3	Median: 28.0	IQR: 18.0 to 41.0	NR	NR	102	51.3
ECZTRA I	TRA 300 mg	603	Median: 37.0	IQR: 27.0 to 48.0	351	58.2	426	70.6	Median: 27.0	IQR: 19.0 to 38.0	NR	NR	305	50.6
ECZTRA 2	РВО	201	Median: 30.0	IQR: 23.0 to 46.0	114	56.7	123	61.2	Median: 25.0	IQR: 18.0 to 36.0	NR	NR	101	50.2
ECZTRA Z	TRA 300 mg	593	Median: 34.0	IQR: 25.0 to 48.0	359	60.5	374	63.1	Median: 25.5	IQR: 17.0 to 39.0	NR	NR	286	48.2
ECZTRA 2	РВО	91	38.9	15.9	46	50.5	46	50.5	30.2	16.8	52	57.1	39	42.9
Subgroup [¶]	TRA 300 mg	270	40.2	15.7	147	54.4	148	54.8	29.7	16.4	153	56.7	117	43.3
	PBO + TCS	127	Median: 34.0	IQR: 24.0 to 50.0	84	66.1	85	66.9	Median: 26.0	IQR: 18.0 to 39.0	66	52	60	47.2
ECZTRA 3	TRA 300 mg + TCS	253	Median: 37.0	IQR: 28.0 to 52.0	125	49.4	203	80.2	Median: 27.0	IQR: 17.0 to 39.0	136	53.8	116	45.8
	Overall	380	Median: 36.0	IQR: 27.0 to 51.0	209	55	288	75.8	Median: 26.0	IQR: 17.0 to 39.0	202	53.2	176	46.3
ECZTEND	Overall	1174	Median: 38	IQR: 27 to 50	675	57.5	NR	NR	Median: 27.0	IQR: 18 to 40	NR	NR	NR	NR
					ι	Jpadacit	tinib							
	РВО	281	34.4	Range: 12 to 75	144	51.2	182	64.8	21.3	15.3	156	55.5	125	44.5
MEASURE UP 1	UPA 15 mg	281	34.1	Range: 12 to 74	157	55.9	182	64.8	20.5	15.9	154	54.8	127	45.2
	UPA 30 mg	285	33.6	Range: 12 to 75	155	54.4	191	67	20.4	14.3	154	54	131	46
MEASURE UP 2	РВО	278	33.4	Range: 13 to 71	154	55.4	195	70.1	21.1	13.6	125	45	153	55

			Δσε ((years)	М	ale	W	hite		e duration	Dis	sease Sev	erity, n	(%)
Study Name	Arms	N	7,80 (yearsy		uic	•••		(у	ears)	Mod	lerate	Sev	vere
			mean	SD	n	%	n	%	Mean	SD	n	%	n	%
	UPA 15 mg	276	33.3	Range: 12 to 74	155	56.2	184	66.7	25.8	5.6	126	45.7	150	54.3
	UPA 30 mg	282	34.1	Range: 12 to 75	162	57.4	198	70.2	25.9	5.8	126	44.7	156	55.3
	PBO + TCS	304	34.3	Range: 12 to 75	178	58.6	225	74	24.3	15.2	141	46.4	163	53.6
AD-UP	UPA 15 mg + TCS	300	32.5	Range: 13 to 74	179	59.7	204	68	22.9	13.9	143	47.7	157	52.3
	UPA 30 mg + TCS	297	35.5	Range: 12 to 75	190	64	218	73.4	23.1	16.1	140	47.1	157	52.9
11	DUP 300 mg	344	36.9	14.1	194	56.4	NR	NR	25	14.8	171	49.7	173	50.3
Heads Up	UPA 30 mg	348	36.6	14.6	183	52.6	NR	NR	23.5	14.7	174	50	174	50
	РВО	41	39.9	17.5	24	58.5	28	68.3	26.8	18.8	18	44	23	56
Phase IIb	UPA 7.5 mg	42	41.5	15.4	28	66.7	24	57	30.4	18.1	29	69	13	31
Guttman- Yassky 2020	UPA 15 mg	42	38.5	15.2	30	71.4	21	50	22.6	15.8	19	45	23	55
	UPA 30 mg	42	39.9	15.3	22	52.4	23	55	24.2	13.6	31	74	11	26
					•	Dupilun	nab							
	РВО	224	Median: 39	IQR: 27 to 50.5	118	53	146	65	Median: 28	IQR: 19 to 40	NR	NR	110	49
SOLO 1	DUP 300 mg Q2W	224	Median: 38	IQR: 27.5 to 48.0	130	58	155	69	Median: 26	IQR: 17 to 40	NR	NR	108	48
	DUP 300 mg QW	223	Median: 39	IQR: 27 to 51	142	64	149	67	Median: 26	IQR: 16 to 42	NR	NR	106	48
5010.3	РВО	236	Median: 35	IQR: 25 to 47	132	56	156	66	Median: 26	IQR: 18 to 39	NR	NR	115	49
SOLO 2	DUP 300 mg Q2W	233	Median: 34.0	IQR: 25 to 46	137	59	165	71	Median: 24.5	IQR: 18 to 36	NR	NR	115	49

			Age (years)	M	ale	\w/	hite	Disease	e duration	Dis	sease Sev	erity, n	(%)
Study Name	Arms	N	Age (years,	141	aic	VV	inte	(у	ears)	Mod	lerate	Sev	vere
			mean	SD	n	%	n	%	Mean	SD	n	%	n	%
	DUP 300 mg QW	239	Median: 35	IQR: 25 to 46	139	58	168	70	Median: 24	IQR: 17 to 37	NR	NR	112	47
	PBO + TCS	315	Median: 34.0	IQR: 25 to 45	193	61	208	66	Median: 26	IQR: 17 to 38	168	53	147	47
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	Median: 40.5	IQR: 28 to 49	62	58	74	70	Median: 28	IQR: 20 to 44	53	50	53	50
	DUP 300 mg + TCS QW	319	Median: 34.0	IQR: 26 to 45	191	60	208	65	Median: 26	IQR: 18 to 39	172	54	147	46
	РВО	83	37	IQR: 27 to 46	51	61.4	54	65.1	NR	NR	1	1.2	0	0
AD 5010	DUP 300 mg Q8W	84	35	IQR: 26 to 46.5	51	60.7	56	66.7	NR	NR	2	2.4	0	0
AD SOLO- CONTINUE	DUP 300 mg Q4W	86	36	IQR: 24 to 49	43	50	64	74.4	NR	NR	6	7	0	0
	DUP 300 mg QW/Q2W	169	36	IQR: 26 to 48	82	48.5	124	73.4	NR	NR	3	1.8	0	0
	PBO QW	61	37.2	13.1	40	66	NR	NR	29.8	13.5	32	53	29	48
Phase IIb	DUP 200 mg	61	35.8	14.9	36	59	NR	NR	25.2	12.8	31	51	30	49
Thaci 2016	DUP 300 mg	64	39.4	12.1	41	64	NR	NR	30.5	15.8	34	53	30	47
	DUP 300 mg	65	36.2	10.7	40	62	NR	NR	26.5	11.4	37	57	28	43

ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, IQR: interquartile range, kg: kilogram, LTE: long-term extension, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, SD: standard deviation, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *N=108, †JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup, ¶North American subgroup.

Table G1.4 Baseline Characteristics II^{35-37,39,40,42,44-48,50,51,54,56,63,64,67,69,76-78,80-84,107}

Charles Name			EASI	score	% BSA a	iffected	sco	RAD	Itch o	PP-NRS
Study Name	Arms	N	mean	SD	mean	SD	mean	SD	mean	SD
				,	Abrocitinib					
	РВО	77	28.7	12.5	47.4	22.7	64.5	13.2	7	1.8
JADE MONO- 1	ABRO 100 mg	156	31.3	13.6	50.8	23.4	67.1	13.7	6.9	2
1	ABRO 200 mg	154	30.6	14.1	49.9	24.4	64.3	13.1	7.1	1.9
	РВО	78	28	10.2	48.2	20.8	64.3	12.4	6.7	1.9
JADE MONO-	ABRO 100 mg	158	28.4	11.2	48.7	21.4	63.8	11.4	7.1	1.6
2	ABRO 200 mg	155	29	12.4	47.7	22.3	64.1	13.1	7	1.6
	Overall	391	28.5	11.5	48.2	21.6	64	12.3	7	1.7
	РВО	96	29.2	12.7	45.8	22.4			7.2	1.7
IADE TEEN	ABRO 100 mg	95	31	12.8	51.2	21.7			7	1.8
JADE TEEN	ABRO 200 mg	94	29.5	12.2	48.7	21.7			6.8	2
	Overall									
	РВО	131	31	12.6	48.9	24.9	67.9	12	7.1	1.8
	ABRO 100 mg	238	30.3	13.5	48.1	23.1	66.8	13.8	7.1	1.7*
JADE COMPARE	ABRO 200 mg	226	32.1	13.1	50.8	23	69.3	12.7	7.6	1.5
COMI AND	DUP 300 mg	242	30.4	12	46.5	22.1	67.9	11.4	7.3	1.7*
	Total	837	30.9	12.8	48.5	23.1	67.9	12.6	7.3	1.7
JADE EXTEND	ABRO 100 mg	595	29.6	12.4	48.6	22.8	NR	NR	48.6	22.8
Subgroup 1 [†]	ABRO 200 mg	521	30.9	13.2	49.5	23.4	NR	NR	49.5	23.4
JADE EXTEND	ABRO 100 mg	130	29.6	11.2	45.4	21.2	NR	NR	7.4	1.7
Subgroup 2 [‡]	ABRO 200 mg	73	31.2	12.4	47.9	22.9	NR	NR	7.2	1.6
Phase IIb	РВО	56	25.4	12.9	40.1	22.3	65	12.1	7.6	1.8
Gooderham	ABRO 100 mg	56	26.7	11.8	41.9	22.3	65.4	13.7	7.4	2.2
2019	ABRO 200 mg	55	24.6	13.5	38	23.3	62.7	13.7	6.9	2.7

					Baricitinib					
	РВО	249	32	13	53	23.1	68	14	NR	NR
DD5575 AD4	BARI 1 mg	127	29	11.8	47	21.2	66	14.4	NR	NR
BREEZE-AD1	BARI 2 mg	123	31	11.7	50	22.1	68	13	NR	NR
	BARI 4 mg	125	32	12.7	52	21.8	68	12.9	NR	NR
	РВО	244	33	12.8	52	21.7	68	12.7	NR	NR
DD5575 AD2	BARI 1 mg	125	33	12.7	55	21.9	67	12.9	NR	NR
BREEZE-AD2	BARI 2 mg	123	35	16	55	26.1	69	13.3	NR	NR
	BARI 4 mg	123	33	12.7	54	21.5	68	13.6	NR	NR
BREEZE-AD3 (LTE)	BARI 2 mg									
	РВО	147	27	11	41.5	23			7	2.4
BREEZE-AD5	BARI 1 mg	147	27.7	12	41.4	23	NR	NR	7.2	2
	BARI 2 mg	146	26.6	11	39.7	22			7.3	2.1
BREEZE-AD6	BARI 2 mg	146	26.6	11.4	NR	NR	6.5	3.1	7.7 [¥]	2.1
	PBO + TCS	109	28.5	12.3	48.1	24.4	66.6	13.8	7.4	1.7
BREEZE-AD7	BARI 2 mg + TCS	109	29.3	11.9	50.6	21.6	66.8	14	7	2.1
	BARI 4 mg + TCS	111	30.9	12.6	52.1	23.3	68.3	13.2	7	2
DI II	PBO + TCS	49	Median: 22.1	IQR: 15.3 to 28.0	NR	NR	Median: 55	IQR: 44.9 to 63.8	Median: 7	IQR: 6 to 8
Phase II Guttman-	BARI 2 mg + TCS	37	Median: 22.1	IQR: 16.8 to 32.3	NR	NR	Median: 53.3	IQR: 49.9 to 61.1	Median: 6	IQR: 5 to 8
Yassky 2018	BARI 4 mg + TCS	38	Median: 19.5	IQR: 13.7 to 25.9	NR	NR	Median: 57.6	IQR: 49.5- 64.9	Median: 6.5	IQR: 4 to 8
	•			Tr	alokinumab				•	
	РВО	199	Median: 30.3	IQR: 22.0 to 41.5	Median: 52.5	IQR: 31.0 to 77.0	Median: 70.8	IQR: 63.8 to 81.0	Median: 7.9	IQR: 6.9 to 8.7
ECZTRA 1	TRA 300 mg	603	Median: 28.2	IQR: 21.3 to 40.0	Median: 50.0	IQR: 33.0 to 70.0	Median: 69.2	IQR: 61.5 to 79.1	Median: 7.9	IQR: 6.7 to 8.9
	Overall	802	NR	NR	NR	NR	NR	NR	NR	NR

	PBO	201	Median:	IQR: 20.6 to	Median:	IQR: 31.0	Median:	IQR: 61.9	Median: 8.1	IQR: 7.1 to 9.0
	1 00	201	29.6	41.4	50.0	to 74.0	69.9	to 79.1	Wicalani. U.1	1011. 7.1 10 3.0
ECZTRA 2	TRA 300 mg	593	Median: 28.2	IQR: 19.8 to 40.8	Median: 50.0	IQR: 31.0 to 74.0	Median: 69.5	IQR: 60.5 to 79.1	Median: 8.0	IQR: 7.0 to 9.0
	Overall	794	NR	NR	NR	NR	NR	NR	NR	NR
ECZTRA 2	PBO	91	29.9	13.1	45.2	23.6	69	11.8	8.1	1.3
Subgroup [¶]	TRA 300 mg	270	27.9	11.8	43.5	23.5	67.1	11.3	8	1.5
	РВО	127	Median: 26.5	IQR: 19.9 to 39.3	Median: 40.0	IQR: 26.0 to 74.0	Median: 67.9	IQR: 59.4 to 79.0	Median: 8.0	IQR: 7.0 to 9.0
ECZTRA 3	TRA 300 mg	253	Median: 24.7	IQR: 18.4 to 35.9	Median: 41.0	IQR: 30.0 to 63.0	Median: 66.2	IQR: 57.6 to 76.3	Median: 8.0	IQR: 6.6 to 8.7
	Overall	380	Median: 25.5	IQR: 19.2 to 37.1	Median: 41.0	IQR: 28.0 to 69.5	Median: 66.5	IQR: 57.9 to 77.6	Median: 8.0	IQR: 6.6 to 8.9
ECZTEND	Overall	1174	Median: 4.7	IQR: 1.8 to 11.7	Median: 44.5	IQR: 30 to 67	Median: 30.2	IQR: 18.7 to 45	NR	NR
				U	padacitinib					
	PBO	281	28.8	12.6	45.7	21.6	66.1	12.9	7.5	1.8
MEASURE UP	UPA 15 mg	281	30.6	12.8	48.5	22.2	68.2	12.6	7.4	1.8
1	UPA 30 mg	285	29	11.1	47	22	67.3	12.5	7.5	1.7
	PBO	278	29.1	12.1	47.6	22.7	67.9	12.1	7.5	1.9
MEASURE UP	UPA 15 mg	276	28.6	11.7	45.1	22.4	66.6	12.5	7.2	1.8
2	UPA 30 mg	282	29.7	12.2	47	23.2	66.7	13	7.4	1.7
	PBO + TCS	304	30.3	13	48.6	23.1	NR	NR	7.1	1.6
AD-UP	UPA 15 mg + TCS	300	29.2	11.8	46.7	21.6	NR	NR	7.1	1.8
	UPA 30 mg + TCS	297	29.7	11.8	48.5	23.1	NR	NR	7.4	1.6
Handa Ha	DUP 300 mg	344	28.8	11.5	44.4	22.8	NR	NR	7.5	1.7
Heads Up	UPA 30 mg	348	30.8	12.5	48.2	24	NR	NR	7.4	1.6
	PBO	41	32.6	14.5	45.7	22.8	NR	NR	6.5	1.9
Phase IIb	UPA 7.5 mg	42	31.4	15.8	46.9	24.9	NR	NR	6.8	1.8
Guttman- Yassky 2020	UPA 15 mg	42	31.4	12.3	50.6	21.5	NR	NR	6.4	1.7
1033Ny 2020	UPA 30 mg	42	28.2	11.6	42.1	20.4	NR	NR	6.3	2.1
					Dupilumab					

	РВО	224	Median: 31.8	IQR:22.2 to 43.8	Median: 57	IQR: 37.4 to 77	Median: 67.0	IQR: 58.0 to 77.6	Median: 7.7	IQR: 6.2 to 8.6
SOLO 1	DUP 300 mg Q2W	224	Median: 30.4	IQR: 21.5 to 40.8	Median: 53.4	IQR: 37.4 to 72.5	Median: 65.1	IQR: 56.5 to 77.4	Median: 7.6	IQR: 5.9 to 8.7
	DUP 300 mg QW	223	Median: 29.8	IQR: 22.0 to 41.2	Median: 54.5	IQR: 39.0 to 73	Median: 65.9	IQR: 57.2 to 75.8	Median: 7.7	IQR: 6.0 to 8.7
	РВО	236	Median: 30.5	IQR: 22.1 to 41.7	Median: 53.3	IQR: 34.0 to 72.8	Median: 68.9	IQR: 58.6 to 78.5	Median: 7.7	IQR: 6.5 to 9.0
SOLO 2	DUP 300 mg Q2W	233	Median: 28.6	IQR: 21.0 to 40.1	Median: 50.0	IQR: 36.0 to 68.0	Median: 67.8	IQR: 57.3 to 76.7	Median: 7.8	IQR: 6.7 to 8.9
	DUP 300 mg QW	239	Median: 29.0	IQR: 21.2 to 41.8	Median: 50.0	IQR: 34.0 to 69.0	Median: 67.4	IQR: 58.4 to 77.9	Median: 7.8	IQR: 6.3 to 8.9
	PBO + TCS	315	Median: 29.6	IQR: 22.2 to 40.8	Median: 55.0	IQR: 40 to 75	Median: 64.1	IQR: 55.9 to 76.1	Median: 7.6	IQR: 6.3 to 8.6
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	Median: 30.9	IQR: 22.3 to 41.6	Median: 58.8	IQR: 43.5 to 78.5	Median: 69.7	IQR: 60.4 to 79.8	Median: 7.7	IQR: 6.6 to 8.5
	DUP 300 mg + TCS QW	319	Median: 29.0	IQR: 21.6 to 40.7	Median: 52.0	IQR: 36 - 71.5	Median: 65.3	IQR: 55.2 to 76.3	Median: 7.4	IQR: 6.0 to 8.6
	PBO	83	2.5	2.3	8.1	8.2	16.8	10	2.8	2.1
AD SOLO-	DUP 300 mg Q8W	84	2.3	2.3	7.9	9	17.1	9.4	2.7	2.3
CONTINUE	DUP 300 mg Q4W	86	2.8	3.3	9.3	10.5	17.5	10.6	3.1	2.2
	DUP 300 mg QW/Q2W	169	2.6	2.9	7.9	9	17.1	10.5	2.8	1.9
	PBO QW	61	32.9	13.8	51.1	24	67.1	13.6	6.34	1.83
Phase IIb	DUP 200 mg Q2W	61	32.9	15.5	50.8	23	68.3	14.0	6.98	2.32
Thaci 2016	DUP 300 mg Q2W	64	33.8	14.5	53.2	25	68.5	12.6	6.74	2.07
	DUP 300 mg Q4W	65	29.4	11.5	48.7	24	67.2	12.3	6.84	1.85

ABRO: abrocitinib, BARI: baricitinib, BSA: body surface area, DUP: dupilumab, IQR: interquartile range, kg: kilogram, LTE: long-term extension, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, SD: standard deviation, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *N=241, †JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup, ¶North American subgroup, ¥SCORAD pruritus.

Table G1.5. Baseline Characteristics III^{35-37,39,40,42,44-48,50,51,54,56,63,64,67,77,78,80-82,84}

C	_			DLQ	ı		CDLQI		F	POEM
Study Name	Arms	N	N	mean	SD	N	mean	SD	mean	SD
				Abrocitinil	b					
	РВО	77	NR	13.9	7.3	NR	13.6	7	19.9	6.1
JADE MONO-1	ABRO 100 mg	156	NR	14.6	6.5	NR	11.7	6.6	19.5	6.5
	ABRO 200 mg	154	NR	14.6	6.8	NR	13.2	5.5	19.6	5.9
	РВО	78	70	15	7.1	8	10.1	3.8	19.2	5.5
JADE MONO-2	ABRO 100 mg	158	140	15.4	7.3	16	13.8	5.8	20.9	5.7
JADE MONO-2	ABRO 200 mg	155	139	14.8	6	15	12.9	5.7	19.7	5.7
	Overall	391	349	15	6.8	39	12.7	5.4	20.1	5.7
	РВО	96	NA	NA	NA					
IADE TEEN	ABRO 100 mg	95	NA	NA	NA					
JADE TEEN	ABRO 200 mg	94	NA	NA	NA					
	Overall	285	NA	NA	NA					
	РВО	131	131	15.2	6.9	NR	NR	NR	20.4	6.1
	ABRO 100 mg	238	238	15.5	6.4	NR	NR	NR	20.9	5.5
JADE COMPARE	ABRO 200 mg	226	226	16.3	6.6	NR	NR	NR	21.5	5.3
	DUP 300 mg	242	242	15.6	6.7	NR	NR	NR	21.1	5.5
	Total	837	837	15.7	6.6	NR	NR	NR	21.1	5.5
				Baricitinib)					
	РВО	249	249	14	7.4	NA	NA	NA	21	5.6
DDEEZE AD1	BARI 1 mg	127	127	13	6.8	NA	NA	NA	20	5.6
BREEZE-AD1	BARI 2 mg	123	123	13	7.7	NA	NA	NA	21	5.6
	BARI 4 mg	125	125	14	7.1	NA	NA	NA	21	5.6
DDEE7E AD2	РВО	244	244	15	8.1	NA	NA	NA	21	6.3
BREEZE-AD2	BARI 1 mg	125	125	15	8.1	NA	NA	NA	20	6.5

Church Name	A			DLQ	I		CDLQI		Р	ОЕМ
Study Name	Arms	N	N	mean	SD	N	mean	SD	mean	SD
	BARI 2 mg	123	123	14	7.7	NA	NA	NA	21	6
	BARI 4 mg	123	123	14	8.4	NA	NA	NA	20	6.3
BREEZE-AD3 (LTE)	BARI 2 mg					NA	NA	NA		
	РВО	147	147	15	7	NA	NA	NA		
BREEZE-AD5	BARI 1 mg	147	147	15	7	NA	NA	NA	NR	NR
	BARI 2 mg	146	146	15	8	NA	NA	NA		
BREEZE-AD6	BARI 2 mg	146	146	15	7.6	NA	NA	NA	NR	NR
	PBO + TCS	109	109	15	7.9	NA	NA	NA	20.9	6.7
BREEZE-AD7	BARI 2 mg + TCS	109	109	15	7.7	NA	NA	NA	21	6.3
	BARI 4 mg + TCS	111	111	14.7	7.9	NA	NA	NA	21.4	6
	PBO + TCS	49	49	Median: 15.0	IQR: 10.0 to 19.0	NA	NA	NA	Median: 20.0	IQR: 17.0 to 23.0
Phase II Guttman-Yassky 2018	BARI 2 mg + TCS	37	37	Median: 10.0	IQR: 7.0 to 17.0	NA	NA	NA	Median: 17.0	IQR: 12.0 to 25.0
2010	BARI 4 mg + TCS	38	38	Median: 11.0	IQR: 8.0 to 17.0	NA	NA	NA	Median: 20.5	IQR: 11.0 to 26.0
				Tralokinuma	ab					
	РВО	199	NR	Median: 16.0	IQR: 13.0 to 22.0	NA	NA	NA	Median: 24.0	IQR: 20.0 to 27.0
ECZTRA 1	TRA 300 mg	603	NR	Median: 17.0	IQR: 12.0 to 22.0	NA	NA	NA	Median: 24.0	IQR: 20.0 to 27.0
	Overall	802	NR	NR	NR	NA	NA	NA	NR	NR
	РВО	201	NR	Median: 18.0	IQR: 12.5 to 24.0	NA	NA	NA	Median: 24.0	IQR: 20.0 to 27.5
ECZTRA 2	TRA 300 mg	593	NR	Median: 18.0	IQR: 13.0 to 23.0	NA	NA	NA	Median: 24.0	IQR: 20.0 to 27.0
	Overall	794	NR	NR	NR	NA	NA	NA	NA	NA
ECZTRA 2 Subgroup*	РВО	91	NR	17.3	7.8	NA	NA	NA	NA	NA
ECZTRA Z Subgroup	TRA 300 mg	270	NR	17.5	7.2	NA	NA	NA	NA	NA
	PBO + TCS	127	125	Median: 18.0	IQR: 12.0 to 23.0	NA	NA	NA	Median: 24.0	IQR: 20.0 to 27.0
ECZTRA 3	TRA 300 mg + TCS	253	250	Median: 18.0	IQR: 12.0 to 23.0	NA	NA	NA	Median: 23.0	IQR: 20.0 to 26.0
	Overall	380	375	Median: 18.0	IQR: 12.0 to 23.0	NA	NA	NA	Median: 23.0	IQR: 20.0 to 27.0
ECZTEND	Overall	1174	1174	Median: 5	IQR: 2 to 10	NA	NA	NA	Median: 12	IQR: 6 to 18

Chudu Nama	A	N.		DLQ	I		CDLQI		Р	ОЕМ
Study Name	Arms	N	N	mean	SD	N	mean	SD	mean	SD
				Upadacitini	b					
	РВО	281	NR	17	6.8	NR	NR	NR	21.5	5.3
MEASURE UP 1	UPA 15 mg	281	NR	16.2	7	NR	NR	NR	21.2	4.8
	UPA 30 mg	285	NR	16.4	7	NR	NR	NR	21.4	5.1
	РВО	278	NR	17.1	7.2	NR	NR	NR	21.9	5.2
MEASURE UP 2	UPA 15 mg	276	NR	16.9	7	NR	NR	NR	21.2	5.1
	UPA 30 mg	282	NR	16.7	6.9	NR	NR	NR	21.8	4.8
	PBO + TCS	304	NR	16.3	7	NR	NR	NR	21.5	5.1
AD-UP	UPA 15 mg + TCS	300	NR	16.4	7.2	NR	NR	NR	21	5
	UPA 30 mg + TCS	297	NR	17.1	7	NR	NR	NR	21.5	5.3
				Dupilumak)					
	PBO	224	224	Median: 14.0	IQR: 9.0 to 20.0	NA	NA	NA	Median: 21.0	IQR: 16.0-25.0
SOLO 1	DUP 300 mg Q2W	224	224	Median: 13.0	IQR: 8.0 to 19.0	NA	NA	NA	Median: 21.0	IQR: 16.0 to 25.0
	DUP 300 mg QW	223	223	Median: 14.0	IQR: 8.0 to 20.0	NA	NA	NA	Median: 22.0	IQR: 17.0 to 26.0
	РВО	236	236	Median: 15.0	IQR: 9.0 to 22.0	NA	NA	NA	Median: 23.0	IQR: 17.0 to 26.0
SOLO 2	DUP 300 mg Q2W	233	233	Median: 15.0	IQR: 10.0 to 21.0	NA	NA	NA	Median: 21.0	IQR: 18.0 to 25.0
	DUP 300 mg QW	239	239	Median: 16.0	IQR: 10.0 to 22.0	NA	NA	NA	Median: 21.0	IQR: 18.0 to 26.0
	PBO + TCS	315	315	Median: 14	IQR: 9 to 20	NA	NA	NA	Median: 20	IQR: 16 to 25
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	106	Median: 13.5	IQR: 8 to 20	NA	NA	NA	Median: 21	IQR: 16 to 25
	DUP 300 mg + TCS QW	319	319	Median: 14	IQR: 8 to 20	NA	NA	NA	Median: 20	IQR: 16 to 25
	PBO	83	NR	3.4	4.3	NA	NA	NA	6.1	5.4
	DUP 300 mg Q8W	84	NR	3	3.8	NA	NA	NA	6.8	5.9
AD SOLO-CONTINUE	DUP 300 mg Q4W	86	NR	3.2	3.9	NA	NA	NA	6.1	5.1
	DUP 300 mg QW/Q2W	169	NR	3.4	4.2	NA	NA	NA	6.4	5.3

Study Nama	Arms	N		DLQ	l		CDLQI		P	OEM
Study Name	Allis	IN	N	mean	SD	N	mean	SD	mean	SD
	PBO QW	61	61	12.8	6.2	NA	NA	NA	NR	NR
Dhasa IIb Thasi 2016	DUP 200 mg Q2W	61	61	15	7.1	NA	NA	NA	NR	NR
Phase IIb Thaci 2016	DUP 300 mg Q2W	64	64	14.5	7.2	NA	NA	NA	NR	NR
	DUP 300 mg Q4W	65	65	13.3	7.3	NA	NA	NA	NR	NR

None of these baseline characteristics were available in JADE EXTEND, Phase IIb Gooderham 2019, Heads Up, and Phase IIb Guttman-Yassky 2020. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, IQR: interquartile range, kg: kilogram, LTE: long-term extension, mg: milligram, N: total number, NA: not applicable, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, SD: standard deviation, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib. *North American subgroup.

Table G1.6. Baseline Characteristics IV^{36,44-47,50,51,54,80}

Study Name	Arms	N	Total I	HADS	HADS Anxiety		HA Depre	DS ession
			mean	SD	mean	SD	mean	SD
			Abrocit	inib				
	РВО	78	NR	NR	6	3.7	4.4	3.3
JADE MONO-	ABRO 100 mg	158	NR	NR	5.5	4.2	4.1	4
2	ABRO 200 mg	155	NR	NR	5.9	3.9	4	3.7
	Overall	391	NR	NR	5.7	4	4.1	3.8
			Bariciti	inib				
BREEZE-AD3 (LTE)	BARI 2 mg	NR	NR	NR				
	РВО	147	NR	NR				
BREEZE-AD5	BARI 1 mg	147	NR	NR	NR	NR	NR	NR
	BARI 2 mg	146	NR	NR				
	PBO + TCS	109	NR	NR	6.8	4.3	5.8	4.3
BREEZE-AD7	BARI 2 mg + TCS	109	NR	NR	6.4	4	5.3	3.7
	BARI 4 mg + TCS	111	NR	NR	6.7	4.4	5.5	4.1

Study Name	Arms	N	Total I	HADS	HA Anxi		HADS Depression	
			mean	SD	mean	SD	mean	SD
			Upadaci	tinib				
AAE A CLIDE LID	РВО	281	NR	NR	7.2	4.4	5	4
MEASURE UP 1	UPA 15 mg	281	NR	NR	7.5	4	5.2	3.9
_	UPA 30 mg	285	NR	NR	7.4	4.4	5.2	4.2
	РВО	278	NR	NR	7.5	4.3	5.8	4.1
MEASURE UP 2	UPA 15 mg	276	NR	NR	7.2	4.2	5.3	4.2
2	UPA 30 mg	282	NR	NR	7.6	4.3	5.9	4.1
			Dupilur	mab				
	РВО	224	Median:12	IQR: 6.0 to 17.0	NR	NR	NR	NR
SOLO 1	DUP 300 mg Q2W	224	Median: 11	IQR: 6.0 to 17.0	NR	NR	NR	NR
	DUP 300 mg QW	223	Median: 12	IQR: 6.0 to 17.5	NR	NR	NR	NR
	РВО	236	Median: 12	IQR: 7.0 to 19.0	NR	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	Median: 13	IQR: 8.0 to 19.0	NR	NR	NR	NR
	DUP 300 mg QW	239	Median: 14	IQR: 8.0 to 20.0	NR	NR	NR	NR
	PBO + TCS	315	Median: 11	IQR:6.0 to 18.0	NR	NR	NR	NR
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	Median: 12.5	IQR: 7.0 to 18.0	NR	NR	NR	NR
	DUP 300 mg + TCS QW	319	Median: 12.0	IQR:7.0 to 18.0	NR	NR	NR	NR
	РВО	83	5.9	6.4	NR	NR	NR	NR

Study Name	Arms	N	Total I	HADS	HAI Anxi	_	HADS Depression	
			mean	SD	mean	SD	mean	SD
	DUP 300 mg Q8W	84	7.1	6.9	NR	NR	NR	NR
AD SOLO-	DUP 300 mg Q4W	86	7.3	7.5	NR	NR	NR	NR
CONTINUE	DUP 300 mg QW/Q2W	169	6.4	5.9	NR	NR	NR	NR

None of these baseline characteristics were available in JADE MONO-1, JADE TEEN, JADE COMPARE, JADE EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD6, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTRD, AD-UP, Heads Up, Phase IIb Guttman-Yassky 2020, and Phase IIb Thaci 2016. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, IQR: interquartile range, LTE: long-term extension, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, SD: standard deviation, TCS: topical corticosteroids.

Table G1.7. Baseline Characteristics: Previous Treatments^{35-37,46,63,64,67}

						Previous T	reatment(s)			
Study Name	Arms	N	Any previous treatment		Topical corticosteroids		Topical ag	ents alone	Systemic agents	
			n	%	n	%	n	%	n	%
				P	Abrocitinib					
	PBO	77	77	100	NR	NR	34	44	41	53
JADE MONO-1	ABRO 100 mg	156	155	99	NR	NR	69	44	78	50
	ABRO 200 mg	154	154	100	NR	NR	82	53	68	44
	PBO	78	78	100	NR	NR	46	59	32	41
JADE MONO-2	ABRO 100 mg	158	157	99.4	NR	NR	87	55.1	70	44.3
JADE MONO-2	ABRO 200 mg	155	153	98.7	NR	NR	93	60	60	38.7
	Overall	391	388	99.2	NR	NR	226	57.8	162	41.4
	PBO	131			NR	NR				
JADE COMPARE	ABRO 100 mg	238			NR	NR				
JADE COMPARE	ABRO 200 mg	226			NR	NR				
	DUP 300 mg	242			NR	NR				

						Previous T	reatment(s)			
Study Name	Arms	N		evious ment	Topical cort	icosteroids	Topical ag	ents alone	Systemic agents	
			n	%	n	%	n	%	n	%
	Total	837			NR	NR				
				E	Baricitinib					
	PBO + TCS	109	NR	NR	101	93	NR	NR	NR	NR
BREEZE-AD7	BARI 2 mg + TCS	109	NR	NR	100	92	NR	NR	NR	NR
	BARI 4 mg + TCS	111	NR	NR	103	93	NR	NR	NR	NR
				Tra	alokinumab					
ECZTRA 1	PBO	199	197	99	195	98	NR	NR	NR	NR
ECZTRA I	TRA 300 mg	603	598	99.2	591	98	NR	NR	NR	NR
ECZTRA 2	РВО	201	201	100	200	99.5	NR	NR	NR	NR
ECZTRA Z	TRA 300 mg	593	591	99.7	584	98.5	NR	NR	NR	NR
ECZTRA 2	РВО	91	NR	NR	91	100	NR	NR	NR	NR
Subgroup*	TRA 300 mg	270	NR	NR	269	99.6	NR	NR	NR	NR
	PBO + TCS	127	127	100	122	96.1	NR	NR	NR	NR
ECZTRA 3	TRA 300 mg + TCS	253	253	100	251	99.2	NR	NR	NR	NR
	Overall	380	380	100	373	98.2	NR	NR	NR	NR
		•		U	padacitinib					
	PBO + TCS	304	157	52	NR	NR	NR	NR	NR	NR
AD-UP	UPA 15 mg + TCS	300	171	57	NR	NR	NR	NR	NR	NR
	UPA 30 mg + TCS	297	172	58	NR	NR	NR	NR	NR	NR

None of these baseline characteristics were available in JADE TEEN, JADE EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD3, BREEZE-AD5, BREEZE-AD6, Phase II Guttman-Yassky 2018, ECZTEND, MEASURE UP 1, MEASURE UP 2, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, LIBERTY AD CHRONOS, LIBERTY AD SOLO-CONTINUE, and Phase IIb Thaci 2016. No trials reported on previous treatment use with crisaborole. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, Q2W: every two weeks, Q4W: every four weeks, TCS: topical corticosteroids, TRA: tralokinumab, %: percent. *North American subgroup.

Table G1.8. Short-Term Efficacy Outcomes: IGA Response Rates 35-37,40,42,45,46,48,50,51,56,63,64,67,69,80,81,84

					IGA ı	response		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value
		•	А	brocitinib				
				Week 1	12			
JADE	PBO	77	6	76	8	REF	REF	REF
MONO-1	ABRO 100 mg	156	37	156	24	15.8	6.8 to 24.8	0.0037
	ABRO 200 mg	154	67	153	44	36	26.2 to 45.7	<0.0001
	PBO	78	7	77	9.1	REF	REF	REF
JADE MONO-2	ABRO 100 mg	158	44	155	28.4	19.3	9.6 to 29.0	0.0008
IVIOIVO-2	ABRO 200 mg	155	59	155	38.1	28.7	18.6 to 38.8	<0.0001
	PBO	96	23	94	24.5	REF	REF	REF
JADE TEEN	ABRO 100 mg	95	37	89	41.6	16.7	3.5 to 29.9	0.0147
	ABO 200 mg	94	43	93	46.2	20.6	7.3 to 33.9	0.003
	PBO	131	18	129	14	REF	REF	REF
	ABRO 100 mg	238	86	235	36.6	23.1	14.7 to 31.4	<0.001
	ABRO 200 mg	226	106	219	48.4	34.8	26.1 to 43.5	<0.001
	DUP 300 mg	242	88	241	36.5	22.5	14.2 to 30.9	NR
				Week 1	16			
JADE COMPARE	PBO	131	16	124	12.9	REF	REF	REF
COMPARE	ABRO 100 mg + PBO→ABRO 100 mg	238	80	230	34.8	22.1	13.7 to 30.5	<0.001
	ABRO 200 mg + PBO→ABRO 200 mg	226	105	221	47.5	35	26.3 to 43.7	<0.001
	DUP 300 mg + Oral PBO→PBO	242	90	232	38.8	25.6	17.1 to 34.1	NR
_				Week 1	12			
Phase IIb	PBO	52	3	52	5.8	REF	0.0 to 12.1	REF
Gooderham 2019	ABRO 100 mg	54	16	54	29.6	NR	17.5 to 41.8	<0.001
	ABRO 200 mg	48	21	48	43.8	NR	29.7 to 57.8	<0.001

			В	aricitinib				
				Week 1	16			
	PBO	249	12	249	4.8	REF	NR	REF
BREEZE-AD1	BARI 1 mg	127	15	127	11.8	7.0	7.3 to 18.6	0.014
	BARI 2 mg	123	14	123	11.4	6.6	6.9 to 18.2	0.02
	BARI 4 mg	125	21	125	16.8	12.0	11.3 to 24.3	<0.001
	PBO	244	11	244	4.5	REF	2.5 to 7.9	REF
DDCC7C AD2	BARI 1 mg	125	11	125	8.8	4.3	5.0 to 15.1	0.108
BREEZE-AD2	BARI 2 mg	123	13	123	10.6	6.1	6.3 to 17.2	0.042
	BARI 4 mg	123	17	123	13.8	9.3	8.8 to 21.0	0.003
	PBO	147	8	147	5.4	NR	NR	NR
BREEZE-AD5	BARI 1 mg	147	19	147	12.9	NR	NR	NR
	BARI 2 mg	146	35	146	24	NR	NR	≤0.001
	PBO + TCS	109	16	109	14.7	REF	REF	NR
BREEZE- AD7	BARI 2 mg + TCS	109	26	109	23.9	9.2	NR	NR
AD7	BARI 4 mg + TCS	111	34	111	30.6	15.9	NR	NR
Phase II	PBO + TCS	49	4	49	8.2	REF	NR	REF
Guttman-	BARI 2 mg + TCS	37	8	37	21.6	13.4	NR	0.115
Yassky 2018	BARI 4 mg + TCS	38	8	38	21.1	12.9	NR	0.118
			Tra	lokinumab				
				Week 1	16			
ECZTRA 1	PBO	197	14	197	7.1	REF	REF	REF
	TRA 300 mg	601	95	601	15.8	8.6	4.1 to 13.1	0.002
FC7TDA 2	PBO	201	22	201	10.9	REF	REF	REF
ECZTRA 2	TRA 300 mg	591	131	591	22.2	11.1	5.8 to 16.4	<0.001
ECZTRA 2	PBO	91	13	91	14.3	REF	REF	REF
Subgroup [†]	TRA 300 mg	270	70	270	25.9	RD: 11.7	3.0 to 20.4	0.021
CCTTDA 2	PBO + TCS	126	33	126	26.2	REF	REF	REF
ECZTRA 3	TRA 300 mg + TCS	252	98	252	38.9	12.4	2.9 to 21.9	0.015

			Up	adacitinib				
				Week 1	16			
MEASURE	PBO	281	22	281	8	NR	NR	REF
UP 1	UPA 15 mg	281	135	281	48	NR	NR	<0.001
	UPA 30 mg	285	177	285	62	NR	NR	<0.001
	PBO	278	14	278	5	NR	NR	REF
MEASURE UP 2	UPA 15 mg	276	108	276	39	NR	NR	<0.001
01 2	UPA 30 mg	282	147	282	52	NR	NR	<0.001
	PBO + TCS	304	33	304	11	REF	REF	REF
AD-UP	UPA 15 mg + TCS	300	120	300	40	28.5	22.1 to 34.9	<0.001
	UPA 30 mg + TCS	297	175	297	59	47.6	41.1 to 54.0	<0.001
				Week	8			
	PBO	41	0	41	0*	NR	NR	NR
	UPA 7.5 mg	42	7	42	16.7*	NR	NR	NR
Phase IIb	UPA 15 mg	42	10	42	23.4*	NR	NR	NR
Guttman-	UPA 30 mg	42	22	42	52.2*	NR	NR	NR
Yassky 2020				Week 1	L6			
	PBO	41	1	41	2.4	NR	NR	REF
	UPA 15 mg	42	13	42	31	NR	NR	<0.001
	UPA 30 mg	42	21	42	50	NR	NR	<0.001
			Dı	upilumab				
				Week 1	16			
SOLO 1	PBO	224	23	224	10	NR	NR	NR
3010 1	DUP 300 mg Q2W	224	85	224	38	NR	NR	NR
	DUP 300 mg QW	223	83	223	37	NR	NR	NR
	PBO	236	20	236	8	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	84	233	36	NR	NR	NR
	DUP 300 mg QW	239	87	239	36	NR	NR	NR
LIDEDTY AD	PBO + TCS	315	39	315	12	REF	REF	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	41	106	39	26	16.3 to 36.3	<0.0001
Cilionos	DUP 300 mg + TCS QW	319	125	319	39	27	20.3 to 33.3	<0.0001

Phase IIb Thaci 2016	PBO QW	61	1	61	2	REF	REF	REF
	DUP 200 mg Q2W	61	17	61	28	26.2	14.5 to 37.9	<0.0001
	DUP 300 mg Q2W	64	19	64	30	28	16.4 to 39.7	<0.0001
	DUP 300 mg Q4W	65	14	65	22	19.9	9.4 to 30.4	0.0004

Short-term data on IGA were not available in Heads Up. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, NS: not significant, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, RD: risk difference, REF: reference, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *digitized estimate, †North American subgroup.

Table G1.9. Short-Term Efficacy Outcomes: EASI75^{35-37,40,42,45,46,48,50,51,56,63,64,67,69,80,81,83,84}

Study Name	Arms	N	EASI 75							
			n	N	%	Diff from PBO	95% CI	p value		
		-			Abrocitinik)				
	Week 12									
JADE MONO-1	PBO	77	9	76	12	REF	REF	REF		
	ABRO 100 mg	156	62	156	40	27.9	17.4 to 38.3	<0.0001		
	ABRO 200 mg	154	96	153	63	51	40.5 to 61.5	<0.0001		
JADE MONO-2	РВО	78	8	77	10.4	REF	REF	REF		
	ABRO 100 mg	158	69	155	44.5	33.9	23.3 to 44.4	<0.0001		
	ABRO 200 mg	155	94	154	61	50.5	40.0 to 60.9	<0.0001		
JADE TEEN	РВО	96	66	94	41.5	REF	REF	REF		
	ABRO 100 mg	95	78	89	68.5	26.5	13.1 to 39.8	0.0002		
	ABO 200 mg	94	81	93	72	29.4	16.3 to 42.5	<0.0001		
JADE COMPARE	РВО	131	35	129	27.1	REF	REF	REF		
	ABRO 100 mg	238	138	235	58.7	31.9	22.2 to 41.6	<0.001		
	ABRO 200 mg	226	154	219	70.3	43.2	33.7 to 52.7	<0.001		
	DUP 300 mg	242	140	241	58.1	30.9	21.1 to 40.6	REF		

	Week 16											
	PBO	131	38	124	30.6	REF	REF	REF				
	ABRO 100 mg + PBO→ABRO 100 mg	238	138	229	60.3	29.7	19.5 to 39.9	<0.001				
	ABRO 200 mg + PBO→ABRO 200 mg	226	157	221	71	40.4	30.4 to 50.4	<0.001				
	DUP 300 mg + Oral PBO→PBO	242	152	232	65.5	34.7	24.6 to 44.8	NR				
-1	Week 12											
Phase IIb Gooderham	PBO	52	8	52	15.4	REF	REF	NR				
2019	ABRO 100 mg	54	22	54	40.7	3.86	1.8 to 8.4	NR				
2015	ABRO 200 mg	48	31	48	64.6	9.51	4.3 to 21.2	NR				
					Baricitinib							
	Week 16											
	PBO	249	22	249	8.8	REF	REF	REF				
BREEZE-AD1	BARI 1 mg	127	22	127	17.3	8.5	11.7 to 24.8	0.0032				
	BARI 2 mg	123	23	123	18.7	9.9	12.8 to 26.5	0.006				
	BARI 4 mg	125	31	125	24.8	16.0	18.1 to 33.0	<0.001				
BREEZE-AD2	PBO	244	15	244	6.1	REF	3.8 to 9.9	REF				
	BARI 1 mg	125	16	125	12.8	6.7	8.0 to 19.8	0.046				
	BARI 2 mg	123	22	123	17.9	11.8	12.1 to 25.6	<0.001				
	BARI 4 mg	123	26	123	21.1	15.0	14.9 to 29.2	<0.001				
BREEZE-AD5	PBO	147	12	147	8.2	NR	NR	REF				
	BARI 1 mg	147	19	147	12.9	NR	NR	NS				
	BARI 2 mg	146	43	146	29.5	NR	NR	≤0.001				
BREEZE-AD7	PBO + TCS	109	25	109	22.9	REF	NR	NR				
	BARI 2 mg + TCS	109	47	109	43.1	20.2	NR	NR				
	BARI 4 mg + TCS	111	53	111	47.7	24.8	NR	NR				
	PBO + TCS	49	10	49	20.4	REF	NR	REF				
	BARI 2 mg + TCS	37	11	37	29.7	9.3	NR	0.319				

Phase II								
Guttman- Yassky 2018	BARI 4 mg + TCS	38	13	38	34.2	13.8	NR	0.148
•			•		Tralokinuma	b		
					W	eek 16		
ECZTRA 1	РВО	197	25	197	12.7	REF	REF	REF
	TRA 300 mg	601	150	601	25	12.1	6.5 to 17.7	<0.001
ECZTRA 2	PBO	201	23	201	11.4	REF	REF	REF
ECZTRA Z	TRA 300 mg	591	196	591	33.2	21.6	15.8 to 27.3	<0.001
ECZTRA 2	РВО	91	14	91	15.4	REF	REF	REF
Subgroup [†]	TRA 300 mg	270	109	270	40.4	RD: 25.0	15.6 to 34.4	<0.001
ECZTRA 3	PBO + TCS	126	45	126	35.7	REF	REF	REF
ECZTRA 3	TRA 300 mg + TCS	252	141	252	56	20.2	9.8 to 30.6	<0.001
					Upadacitinil	b		
					W	eek 16		
MEASURE	РВО	281	45	281	16	NR	NR	REF
UP 1	UPA 15 mg	281	197	281	70	NR	NR	<0.001
	UPA 30 mg	285	228	285	80	NR	NR	<0.001
MEACUIDE	PBO	278	36	278	13	NR	NR	REF
MEASURE UP 2	UPA 15 mg	276	166	276	60	NR	NR	<0.001
01 2	UPA 30 mg	282	206	282	73	NR	NR	<0.001
	PBO + TCS	304	79	304	26	NR	NR	REF
AD-UP	UPA 15 mg + TCS	300	195	300	65	NR	NR	<0.001
	UPA 30 mg + TCS	297	229	297	77	NR	NR	<0.001
Heads Up	DUP 300 mg	344	210	344	61.1	REF	NR	REF
пеаus op	UPA 30 mg	348	247	348	71	10	NR	0.006
					W	eek 8		
Phase IIb	PBO	41	3	41	7.3	NR	NR	REF
Guttman-	UPA 7.5 mg	42	13	42	31	NR	NR	0.004
Yassky 2020	UPA 15 mg	42	22	42	52.4	NR	NR	<0.001
	UPA 30 mg	42	34	42	81	NR	NR	<0.001

		<u></u>		<u></u>		/eek 16		
	РВО	41	4	41	9.8	NR	NR	REF
	UPA 15 mg	42	22	42	52.4	NR	NR	<0.001
	UPA 30 mg	42	29	42	69	NR	NR	<0.001
					Dupiluma)		
					V	/eek 16		
50104	РВО	224	33	224	15	NR	NR	NR
SOLO 1	DUP 300 mg Q2W	224	115	224	51	NR	NR	NR
DU PBG SOLO 2 DU	DUP 300 mg QW	223	117	223	52	NR	NR	NR
	РВО	236	28	236	12	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	103	233	44	NR	NR	NR
SOLO 2 DU	DUP 300 mg QW	239	115	239	48	NR	NR	NR
	PBO + TCS	315	73	315	23	REF	REF	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	73	106	69	46	35.7 to 55.7	<0.0001
CHRONOS	DUP 300 mg + TCS QW	319	204	319	64	41	33.7 to 47.8	<0.0001
	PBO QW	61	7	NR	11.09*	NR	NR	0.147
Phase IIb	DUP 200 mg Q2W	61	34	NR	55.5*	NR	NR	<0.0001
Thaci 2016	DUP 300 mg Q2W	64	34	NR	52.8*	NR	NR	<0.0001
	DUP 300 mg Q4W	65	32	NR	48.6*	NR	NR	<0.0001

ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, NS: not significant, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, RD: risk difference, REF: reference, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *digitized estimate, *North American subgroup.

Table G1.10. Short-Term Efficacy Outcomes: EASI 50 and 90^{35-37,40,42,45,46,48,50,51,56,63,64,69-71,80,81,83,84}

					ı	EASI 50						EASI 90		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
			-			Abroc	itinib		•					
							Week 12							
	PBO	77	17	76	22	REF	REF	NR	4	76	5	REF	REF	NR
JADE MONO-1	ABRO 100 mg	156	90	156	58	35.3	23.3 to 47.4	NR	29	156	19	13.3	5.4 to 21.2	NR
PI	ABRO 200 mg	154	116	153	76	53.5	42.0 to 65.0	NR	59	153	39	33.4	24.3 to 42.5	NR
	PBO	78	15	77	19.5	REF	REF	NR	3	77	3.9	REF	REF	REF
-	ABRO 100 mg	158	106	155	68.4	48.7	37.2 to 60.1	NR	37	155	23.9	20.1	11.9 to 28.3	≤0.0001
MONO-2	ABRO 200 mg	155	123	154	79.9	60.1	49.1 to 71.0	NR	58	154	37.7	33.5	24.6 to 42.5	≤0.0001
	PBO	96	66	94	69.1	NR	NR	NR	17	94	18.1	NR	NR	NR
JADE TEEN	ABRO 100 mg	95	78	89	87.6	NR	NR	NR	37	89	41.6	NR	NR	NR
	ABO 200 mg	94	81	93	87.1	NR	NR	NR	46	93	49.5	NR	NR	NR
						•	Week 16		•			•		
	PBO	131	71	124	57.3	NR	NR	NR	14	124	11.3	NR	NR	NR
JADE	ABRO 100 mg + PBO→ABRO 100 mg	238	186	229	81.2	NR	NR	NR	87	229	38	NR	NR	NR
COMPARE	ABRO 200 mg + PBO→ABRO 200 mg	226	193	221	87.3	NR	NR	NR	108	221	48.9	NR	NR	NR
	DUP 300 mg + Oral PBO→PBO	242	195	232	84.1	NR	NR	NR	90	232	38.8	NR	NR	NR
							Week 12							1
	PBO	52	14	52	26.9	REF	REF	NR	5	52	9.6	REF	REF	NR

						EASI 50						EASI 90		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
Phase IIb Gooderham	ABRO 100 mg	54	30	54	55.6	3.8	OR: 1.7 to 6.5	NR	14	54	25.9	3.2	1.3 to 7.9	NR
2019	ABRO 200 mg	48	38	48	79.2	9.7	OR: 4.5 to 20.9	NR	21	48	43.8	9.3	3.8 to 22.5	NR
						Baric	itinib							
							Week 16							
	РВО	249	38	249	15.3	REF	NR	REF	12	249	4.8	REF	REF	REF
BREEZE-AD1	BARI 1 mg	127	32	127	25.0	9.7	NR	<0.05	11	127	8.7	3.9	NR	NS
	BARI 2 mg	123	37	123	30.1	14.8	NR	<0.001	13	123	10.6	5.8	NR	<0.05
	BARI 4 mg	125	52	125	41.6	26.3	NR	<0.001	20	125	16.0	11.2	NR	<0.001
	РВО	244	30	244	12.3	REF	NR	REF	6	244	2.5	REF	1.1 to 5.3	REF
BREEZE-AD2	BARI 1 mg	125	23	125	18.4	6.1	NR	NS	8	125	6.4	3.9	3.3 to 12.1	0.053
BREEZE-ADZ	BARI 2 mg	123	34	123	27.6	15.3	NR	<0.001	11	123	8.9	6.4	5.1 to 15.3	0.007
	BARI 4 mg	123	36	123	29.3	17.0	NR	<0.001	16	123	13.0	10.5	8.2 to 20.1	<0.001
	РВО	147	19	147	12.9	NR	8.4 to 19.3	NR	5	147	3.4	NR	1.5 to 7.7	NR
BREEZE-AD5	BARI 1 mg	147	29	147	19.7	NR	14.1 to 26.9	NS	11	147	7.5	NR	4.2 to 12.9	NR
	BARI 2 mg	146	51	146	34.9	NR	27.7 to 43	≤0.001	30	146	20.5	NR	14.8 to 27.8	<0.001
	PBO + TCS	109	45	109	41.3	REF	NR	REF	15	109	13.8	REF	NR	NR
BREEZE-AD7	BARI 2 mg + TCS	109	70	109	64.2	22.9	NR	NR	18	109	16.5	2.7	NR	NR
	BARI 4 mg + TCS	111	78	111	70.3	29	NR	NR	27	111	24.3	10.5	NR	NR
	PBO + TCS	49	18	49	36.7	REF	NR	REF	3	49	6.1	REF	NR	REF

						EASI 50						EASI 90		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
Phase II Guttman-	BARI 2 mg + TCS	37	21	37	56.8	20.1	NR	0.065	7	37	18.9	12.8	NR	0.092
Yassky 2018	BARI 4 mg + TCS	38	23	38	60.5	23.8	NR	0.027	8	38	21.1	15	NR	0.052
						Traloki	numab							
							Week 16							
ECZTRA 1	PBO	197	42	197	21.3	REF	REF	REF	8	197	4.1	REF	REF	REF
	TRA 300 mg	601	250	601	41.6	20.1	13.3 to 26.8	<0.001	87	601	14.5	10.3	6.4 to 14.1	<0.001
	PBO	201	41	201	20.4	REF	REF	REF	11	201	5.5	REF	REF	REF
ECZTRA 2	TRA 300 mg	591	295	591	49.9	29.3	22.5 to 36.1	<0.001	108	591	18.3	12.7	8.3 to 17.0	<0.001
	PBO + TCS	126	73	126	57.9	REF	REF	REF	27	126	21.4	REF	REF	REF
ECZTRA 3	TRA 300 mg + TCS	252	200	252	79.4	21.3	11.3 to 31.3	<0.001	83	252	32.9	11.4	2.1 to 20.7	0.022
						Upada	citinib							
							Week 16							
MEASURE	PBO	281	83	281	29.6	NR	NR	REF	22	281	8	NR	NR	REF
UP 1	UPA 15 mg	281	217	281	77.2	NR	NR	≤0.001	149	281	53	NR	NR	<0.001
	UPA 30 mg	285	244	285	85.6	NR	NR	≤0.001	188	285	66	NR	NR	<0.001
	PBO	278	79	278	28.4	NR	NR	REF	14	278	5	NR	NR	- REF
MEASURE UP 2	UPA 15 mg	276	206	276	74.6	NR	NR	≤0.001	116	276	42	NR	NR	<0.001
01 2	UPA 30 mg	282	232	282	82.1	NR	NR	≤0.001	163	282	58	NR	NR	<0.001
	PBO + TCS	304	124	304	40.9	NR	NR	REF	40	304	13.2	REF	9.4 to 17.0	REF
AD-UP	UPA 15 mg + TCS	300	244	300	81.4	NR	NR	≤0.001	128	300	42.8	28.5	22.1 to 34.9	<0.001
	UPA 30 mg + TCS	297	262	297	88.1	NR	NR	≤0.001	187	297	63.1	49.9	43.3 to 56.4	<0.001

					ı	EASI 50						EASI 90		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
Handa Ha	DUP 300 mg	344				NR			133	344	38.7	REF	NR	REF
Heads Up	UPA 30 mg	348				NR	NR	NR	211	348	60.6	Diff From PBO PB	<0.001	
							Week 8							
	РВО	41	9	41	22	NR	NR	REF	0	41	0	NR	NR	REF
	UPA 7.5 mg	42	23	42	54.8	NR	NR	<0.001	4	42	9.5	NR	NR	0.051
Phase IIb	UPA 15 mg	42	30	42	71.4	NR	NR	<0.001	11	42	26.2	NR	NR	<0.001
Guttman-	UPA 30 mg	42	39	42	92.9	NR	NR	<0.001	19	42	45.2	NR	NR	<0.001
Yassky 2020							Week 16							
	РВО	41	9	41	22	NR	NR	REF	1	41	2.4	NR	NR	REF
	UPA 15 mg	42	30	42	71.4	NR	NR	<0.001	11	42	26.2	NR	NR	<0.01
	UPA 30 mg	42	35	42	83.3	NR	NR	<0.001	21	42	50	NR	NR	<0.001
						Dupil	umab		•	•		•		
							Week 16							
	РВО	224	55	224	25	NR	NR	NR	17	224	8	NR	NR	NR
SOLO 1	DUP 300 mg Q2W	224	154	224	69	NR	NR	NR	80	224	36	NR	NR	NR
	DUP 300 mg QW	223	136	223	61	NR	NR	NR	74	223	33	NR	NR	NR
	РВО	236	52	236	22	NR	NR	NR	17	236	7	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	152	233	65	NR	NR	NR	70	233	30	NR	NR	NR
	DUP 300 mg QW	239	146	239	61	NR	NR	NR	73	239	31	NR	NR	NR
	PBO + TCS	315	118	315	37	REF	REF	REF	35	315	11	REF	REF	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	85	106	80	43	33.5 to 52.0	<0.0001	42	106	40	29	18.6 to 38.5	<0.0001
CHINONOS	DUP 300 mg + TCS QW	319	249	319	78	41	33.6 to 47.6	<0.0001	138	319	43	32	25.7 to 38.6	<0.0001

					ı	EASI 50						EASI 90		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
	PBO QW	61	18	61	30	NR	NR	REF	2	61	3.5*	NR	NR	0.0242
Phase IIb	DUP 200 mg Q2W	61	38	61	62	NR	NR	0.0003	19	61	31.1*	NR	NR	<0.0001
Thaci 2016	DUP 300 mg Q2W	64	50	64	78	NR	NR	<0.0001	19	64	29.8*	NR	NR	<0.0001
	DUP 300 mg Q4W	65	46	65	71	NR	NR	<0.0001	19	65	28.8*	NR	NR	<0.0001

Short-term data on EASI 50 and EASI 90 were not available in JADE COMPARE at 12 weeks. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, NS: not significant, OR: odds ratio, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *digitized estimate.

Table G1.11. Short-Term Efficacy Outcomes: PP-NRS ≥4-Point Change 35-37,39,40,42,45,46,48,50,51,56,63,64,69-71,80,81,83,84

					Ito	h or PP-NRS (≥4-	point improvem	ent from ba	seline)	
Study Name	Arms	N	n	N	%	Change from baseline	SD	Diff from PBO	95% CI	p value
			l .	1	Abrocit	inib		1		
	Week 12									
JADE MONO-	РВО	77	11	74	15	NR	NR	REF	REF	REF
JADE MONO- 1	ABRO 100 mg	156	55	147	38	NR	NR	22.5	10.3 to 34.8	0.0003
	ABRO 200 mg	154	84	147	57.2	NR	NR	41.7	PM 95% CI REF 10.3 to 34.8 29.6 to 53.9 4.1 to 19.0 22.8 to 44.7 32.9 to 55.0 REF	<0.0001
	РВО	78	9	76	11.5	NR	NR	REF	4.1 to 19.0	REF
	ABRO 100 mg	158	71	156	45.2	NR	NR	33.7	22.8 to 44.7	<0.0001
2	ABRO 200 mg	155	85	153	55.3	NR	NR	43.9	32.9 to 55.0	<0.0001
IADE TEEN	PBO	96	25	84	29.8		NR	REF	REF	REF
JADE MONO-	ABRO 100 mg	95	40	76	52.6		NR	22.8	8 to 37.7	0.0035

JADE COMPARE Phase IIb Gooderham 2019 BREEZE-AD1					lto	th or PP-NRS (≥4-	point improven	nent from bas	seline)	
	Arms	N	n	N	%	Change from baseline	SD	Diff from PBO	95% CI	p value
	ABRO 200 mg	94	41	74	55.4		NR	25.6	10.6 to 40.6	0.0013
	PBO	131	35	121	29	NR	NR	NR	NR	NR
	ABRO 100 mg	238	105	221	48	NR	NR	NR	NR	NR
	ABRO 200 mg	226	137	217	63	NR	NR	NR	NR	NR
ADE COMPARE Phase IIb Gooderham 2019 BREEZE-AD1	DUP 300 mg	242	122	224	54	NR	NR	NR	NR	NR
		•		•		Week 16		<u> </u>		
COMPARE	РВО	131	27	94	28.7		NR	NR	NR	NR
	ABRO 100 mg	238	79	168	47.0	-	NR	17.9	9.5 to 26.3	0.0002
	ABRO 200 mg	226	108	172	62.8	-	NR	34.9	26 to 43.7	<.0001
	DUP 300 mg	242	108	189	57.1	-	NR	5.2	-2.9 to 13.4	0.2084
		·	_			Week 12				
	РВО	52	13	51	25.5	NR	NR	REF	REF	NR
	ABRO 100 mg	54	25	50	50	NR	NR	OR: 2.8	1.4 to 5.8	NR
2013	ABRO 200 mg	48	28	44	63.6	NR	NR	OR: 5.1	2.4 to 10.8	NR
					Baricit	inib				
						Week 16				
	РВО	249	16	222	7.2	NR	NR	REF	1.2 to 5.8	REF
BREEZE-AD1	BARI 1 mg	127	11	105	10.5	NR	NR	3.3	6.0 to 17.8	0.246
	BARI 2 mg	123	12	100	12.0	NR	NR	4.8	7.0 to 19.8	0.169
	BARI 4 mg	125	23	107	21.5	NR	NR	14.3	14.8 to 30.2	<0.001
	PBO	244	10	213	4.7	NR	NR	REF	2.6 to 8.4	REF
DDEE7E AD2	BARI 1 mg	125	6	100	6.0	NR	NR	1.3	2.8 to 122.5	0.505
RKEEZE-ADZ	BARI 2 mg	123	16	106	15.1	NR	NR	10.4	9.5 to 23.1	0.002
	BARI 4 mg	123	20	107	18.7	NR	NR	14.0	12.4 to 27.1	<0.001
	РВО	147	7	123	5.7	NR	NR	NR	NR	REF
BREEZE-AD5	BARI 1 mg	147	21	132	15.9	NR	NR	NR	NR	≤0.05
	BARI 2 mg	146	33	131	25.2	NR	NR	NR	NR	≤0.001

					lto	h or PP-NRS (≥4-	point improvem	ent from ba	seline)	
Study Name	Arms	N	n	N	%	Change from baseline	SD	Diff from PBO	95% CI	p value
	PBO + TCS	109	21	104	20.2	LSM: -27*	SE: 3.4	REF	NR	REF
BREEZE-AD7	BARI 2 mg + TCS	109	37	97	38.1	LSM: -43.4*	SE: 3.3	17.9	NR	0.002
	BARI 4 mg + TCS	111	44	100	44	LSM: -51.2*	SE: 3.3	23.8	NR	<0.001
Phase II	PBO + TCS	49	NR	NR	NR	LSM: -1.72	SE: 0.44	NR	NR	NR
Guttman-	BARI 2 mg + TCS	37	NR	NR	NR	LSM: -2.61	SE: 0.47	NR	NR	NR
Yassky 2018	BARI 4 mg + TCS	38	NR	NR	NR	LSM: -2.22	SE: 0.46	NR	NR	NR
					Tralokin	umab				
						Week 16				
ECZTRA 1	РВО	197	20	194	10.3	-1.7	SE: 0.21	REF	REF	REF
	TRA 300 mg	601	119	594	20	-2.6	SE: 0.11	9.7	4.4 to 15.0	0.002
5.07TD 4.2	РВО	201	19	200	9.5	-1.6	SD	REF		
BREEZE-AD7 Phase II Guttman- Yassky 2018 ECZTRA 1 ECZTRA 2 ECZTRA 2 Subgroup [‡] ECZTRA 3 MEASURE UP 1 MEASURE UP 2 AD-UP	TRA 300 mg	591	144	575	25	-2.9	SE: 0.11	15.6	10.3 to 20.9	<0.001
ECZTRA 2	РВО	91	13	90	14.4	-1.9 [†]	SE: 0.3 [†]	REF	REF	REF
Subgroup [‡]	TRA 300 mg	270	77	264	29.2	-3.1 [†]	SE: 0.2 [†]	RD: 14.9	5.9 to 23.9	0.005
5.07TD 4.2	PBO + TCS	126	43	126	34.1	-2.9	SE: 0.21	REF	REF	REF
ECZTRA 3	TRA 300 mg + TCS	252	113	249	45.4	-4.1	SE: 0.15	11.3	0.9 to 21.6	0.037
		•	•		Upadaci	tinib				
						Week 16				
MEASURE UP	РВО	281	32	272	11.8	LSM: 26.1*	SE: 5.24 [†]	REF	REF	REF
1	UPA 15 mg	281	143	274	52.2	LSM: 62.8*	SE: 4.37 [†]	40.5	33.5 to 47.5	≤0.001
	UPA 30 mg	285	171	285	60	LSM: 72*	SE:4.37 [†]	48.2	41.3 to 55.0	≤0.001
	РВО	278	25	274	9.1	LSM: 17*	SE: 2.81 [†]	REF	REF	REF
	UPA 15 mg	276	113	270	41.9	LSM: 51.2*	SE: 2.34 [†]	32.6	25.8 to 39.4	≤0.001
UP Z	UPA 30 mg	282	167	280	59.6	LSM: 66.5*	SE: 2.34 [†]	50.4	43.8 to 57.1	≤0.001
	PBO + TCS	304	44	294	15	25.1	SE: 3.4	REF	10.9 to 19.0	REF
AD-UP	UPA 15 mg + TCS	300	149	288	51.7	58.1	SE: 3.4	36.8	29.7 to 43.8	≤0.001
	UPA 30 mg + TCS	297	186	291	63.9	66.9	SE: 2.91	48.8	41.9 to 55.7	≤0.001

					lto	th or PP-NRS (≥4- _l	point improven	nent from bas	seline)	
Phase IIb Guttman- Yassky 2020 SOLO 1	Arms	N	n	N	%	Change from baseline	SD	Diff from PBO	95% CI	p value
11	DUP 300 mg	344	120	336	35.7	-49	2	REF	NR	REF
Heads Up	UPA 30 mg	348	188	340	55.3	-66.9	1.9	-17.8	NR	<0.001
						Week 8				
	РВО	41	2	37	5.5 [†]	LSM: -6.7*	SE: 7.5	NR	NR	REF
	UPA 7.5 mg	42	13	40	32.1 [†]	LSM: -35.5*	SE: 7.3	NR	NR	0.002
Phase IIb	UPA 15 mg	42	22	37	58.8 [†]	LSM: -45.1*	SE: 7.3	NR	NR	<0.001
Phase IIb Guttman- Yassky 2020 SOLO 1 SOLO 2 LIBERTY AD CHRONOS Phase IIb Thaci 2016	UPA 30 mg	42	27	42	63.7 [†]	LSM: -73.1*	SE: 7.1	NR	NR	<0.001
		-		•		Week 16		-		•
	РВО	41	2	35	5.7	LSM: -9.7*	SE: 8.3	NR	NR	REF
	UPA 15 mg	42	19	32	59.4	LSM: -48*	SE: 8.1	NR	NR	<0.001
	UPA 30 mg	42	19	36	52.8	LSM: -68.9*	SE: 7.8	NR	NR	<0.001
					Dupiluı	mab				
						Week 16				
5010.4	РВО	224	26	212	12	LSM: -26.1*	SE: 3	NR	NR	NR
SOLO I	DUP 300 mg Q2W	224	87	213	41	LSM: -51*	SE: 2.5	NR	NR	NR
	DUP 300 mg QW	223	81	201	40	LSM: -48.9*	SE: 2.6	NR	NR	NR
	PBO	236	21	221	10	LSM: -15.4*	SE: 3	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	81	225	36	LSM: -44.3*	SE: 2.3	NR	NR	NR
	DUP 300 mg QW	239	89	228	39	LSM: -48.3*	SE: 2.4	NR	NR	NR
	PBO + TCS	315	59	299	20	LSM: -2.1	SE: 0.1	REF	REF	REF
	DUP 300 mg + TCS Q2W	106	60	102	59	LSM: -4.1	SE: 0.2	39	28.5 to 49.7	<0.0001
CURONOS	DUP 300 mg + TCS QW	319	150	295	51	LSM: -4.1	SE: 0.1	31	23.8 to 38.4	<0.0001
-1	PBO QW	61	NR	NR	NR	LSM: -5.2*	SE: 4.8	NR	NR	NR
	DUP 200 mg Q2W	61	NR	NR	NR	LSM: -34.1*	SE: 4.7	NR	NR	NR
IIIdCI ZUID	DUP 300 mg Q2W	64	NR	NR	NR	LSM: -40.1*	SE: 4.5	NR	NR	NR

					Itc	h or PP-NRS (≥4-	point improvem	ent from ba	seline)	
Study Name	Arms	N	n	N	%	Change from baseline	SD	Diff from PBO	95% CI	p value
	DUP 300 mg Q4W	65	NR	NR	NR	LSM: -32.6*	SE: 4.5	NR	NR	NR

ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, LSM: least squares mean, mg: milligram, n: number, N: total number, NR: not reported, OR: odds ratio, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, RD: risk difference, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *percent change, †digitized estimate, †North American subgroup.

Table G1.12. Short-Term Efficacy Outcomes: SCORAD 35-37,39,40,42,45,46,48,50,51,56,63,64,69-71,80,81,84,155,156

					SCORAD			
Study Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value
				Abrocitinib				
				Week :	12			
JADE MONO-	РВО	77	75	LSM: -13.6	95% CI: -18.3 to -9	REF	REF	REF
1	ABRO 100 mg	156	150	LSM: -27	95% CI: -30.2 to -23.7	-13.3	-19 to -7.7	<0.0001
	ABO 200 mg	154	151	LSM: -35.5	95% CI: -38.7 to -32.3	-21.9	-27.5 to -16.3	<0.0001
IADE MONO	РВО	78	78	LSM: -22.7	95% CI: -30.4 to -15.1	REF	REF	REF
JADE MONO- 2	ABRO 100 mg	158	158	LSM: -45.8	95% CI: -50.9 to -40.7	-23.1	-32.3 to -13.9	<0.0001
2	ABO 200 mg	155	155	LSM: -56.2	95% CI: -61.2 to -51.1	-33.4	-42.6 to -24.3	<0.0001
	РВО	96	96	LSM: -30.2	95% CI: -33.9 to -26.4	NR	NR	NR
JADE TEEN	ABRO 100 mg	95	95	LSM: -40.9	95% CI: -44.7 to -37.2	NR	NR	NR
	ABO 200 mg	94	93	LSM: -42.9	95% CI: -46.7 to -39.1	NR	NR	NR
	PBO	131	131	LSM: -23	NR	NR	NR	NR
	ABRO 100 mg	238	238	LSM: -36.6	NR	NR	NR	NR
	ABRO 200 mg	226	226	LSM: -44.9	NR	NR	NR	NR
	DUP 300 mg	242	242	LSM: -39.7	NR	NR	NR	NR
				Week :	16			
JADE COMPARE	PBO	131	123	NR	95% CI: 5.1 to 16.0	NR	NR	NR
COMPARE	ABRO 100 mg + PBO→ABRO 100 mg	238	228	NR	95% CI:21.0 to 32.5	NR	NR	NR
	ABRO 200 mg + PBO→ABRO 200 mg	226	221	NR	95% CI: 33.8 to 46.7	NR	NR	NR
	DUP 300 mg + Oral PBO→PBO	242	231	NR	95% CI:23.6 to 35.3	NR	NR	NR
	1		•	Week :	12			
Phase II	PBO	52	52	-29	95% CI: -36.6 to -21.3	NR	NR	REF
Gooderham 2019	ABRO 100 mg	54	54	-49.2	95% CI: -56.4 to -42.0	NR	NR	0.002
2013	ABRO 200 mg	48	48	-69.7	95% CI: -76.9 to -62.5	NR	NR	<0.001

					SCORAD			
Study Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value
			•	Baricitinib		1		
	Week 16							
	PBO	249	249	LSM: -13.5	SE: 2	REF	REF	REF
BREEZE-AD1	BARI 1 mg	127	127	LSM: -18.9	SE: 2.5	-9.1	-11.6 to 0.9	0.093
	BARI 2 mg	123	123	LSM: -21.5	SE: 2.4	-12.7	-14.0 to -1.9	0.01
	BARI 4 mg	125	125	LSM: -28.3	SE: 2.1	-23.0	-20.5 to -9.1	<0.001
	PBO	244	244	LSM: -13.4	SE: 2.3	REF	REF	REF
DDEE3E AD3	BARI 1 mg	125	125	LSM: -20.2	SE: 2.8	-11.3	-14 to 0.3	0.059
BREEZE-AD2	BARI 2 mg	123	123	LSM: -27.8	SE: 2.6	-21.6	-21.3 to -7.6	<0.001
	BARI 4 mg	123	123	LSM: -27.5	SE: 2.4	-22.7	-20.7 to -7.6	<0.001
	PBO + TCS	109	109	LSM: -21.4	SE: 1.9	REF	REF	REF
BREEZE-AD7	BARI 2 mg + TCS	109	109	LSM: -29.9	SE: 1.9	-8.5	-13.7 to -3.2	0.002
	BARI 4 mg + TCS	111	111	LSM: -35.8	SE: 1.8	-14.8	-19.6 to -9.1	<0.001
Phase II	PBO + TCS	49	49	LSM: -11.9	SE: 2.9	REF	NR	REF
Guttman-	BARI 2 mg + TCS	37	37	LSM: -23.9	SE: 3.0	-23	NR	<0.01
Yassky 2018	BARI 4 mg + TCS	38	38	LSM: -26.5	SE: 3.0	-31	NR	<0.001
				Tralokinumab				
				Week 1	6			
ECZTRA 1	РВО	197	NR	-14.7	SE: 1.8	REF	REF	REF
	TRA 300 mg	601	NR	-25.2	SE: 0.9	-10.4	-14.4 to -6.5	<0.001
FC7TD 4 2	РВО	201	NR	-14	SE: 1.8	REF	REF	REF
ECZTRA 2	TRA 300 mg	591	NR	-28.1	SE: 0.9	-14	-18 to -10.1	<0.001
ECZTRA 2	РВО	91	NR	-16	NR	REF	REF	REF
Subgroup [†]	TRA 300 mg	270	NR	-29	NR	LSM: -13.7	-19.3 to -8.0	<0.001
ECZTRA 3	PBO + TCS	126	NR	-26.8	SE: 1.8	REF	REF	REF
ECZINA 3	TRA 300 mg + TCS	252	NR	-37.7	SE: 1.3	-10.9	-15.2 to -6⋅6	<0.001

				Upadacitinib				
				Weel	16			
MEASURE UP	PBO	281	125	-32.7	95% CI: -37.3 to -28.1	REF	REF	REF
1	UPA 15 mg	281	239	-65.7	95% CI: -69.2 to -62.2	-33.0	-38.4 to -27.6	<0.001
	UPA 30 mg	285	253	-40.4	95% CI: -76.5 to -69.7	-40.4	-45.8 to -35.0	<0.001
MEASURE UP	PBO	278	142	-28.4	95% CI: -33.3 to -23.5	REF	REF	REF
2	UPA 15 mg	276	246	-29.5	95% CI: -61.8 to '54.0	-29.5	-35.2 to -23.7	<0.001
	UPA 30 mg	282	250	-68.4	95% CI: -72.4 to ;64.4	-40.0	-45.8 to -34.2	<0.001
		T	T	Wee	T T		1	
	PBO	41	33	LSM: -7*	SE: 5.8	NR	NR	REF
	UPA 7.5 mg	42	39	LSM: -35.4*	SE: 5.5	NR	NR	<0.001
Phase IIb	UPA 15 mg	42	36	LSM: -44.1*	SE: 5.7	NR	NR	< 0.001
Guttman-	UPA 30 mg	42	40	LSM: -65.3*	5.5	NR	NR	<0.001
Yassky 2020				Weel	16			
	РВО	41	33	LSM: -12.4*	SE: 6.0	NR	NR	REF
	UPA 15 mg	42	36	LSM: -46.9*	SE: 5.8	NR	NR	<0.001
	UPA 30 mg	42	40	LSM: -60.4*	SE: 5.7	NR	NR	<0.001
				Dupilumab				
				Weel	16			
SOLO 1	РВО	224	NR	LSM: -29*	SE: 3.2	NR	NR	NR
SOLO 1	DUP 300 mg Q2W	224	NR	LSM: -57.7*	SE: 2.1	NR	NR	NR
	DUP 300 mg QW	223	NR	LSM: -57*	SE: 2.1	NR	NR	NR
	РВО	236	NR	LSM: -19.7*	SE: 2.5	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	NR	LSM: -51.1*	SE: 2	NR	NR	NR
	DUP 300 mg QW	239	NR	LSM: -53.5*	SE: 2	NR	NR	NR
	PBO + TCS	315	315	LSM: -31.8*	SE: 1.55	NR	NR	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	106	LSM: -62.1*	SE: 2.61	NR	NR	<0.0001
CHRONOS	DUP 300 mg + TCS QW	319	319	LSM: -63.3*	SE: 1.53	NR	NR	<0.0001
Phase IIb	PBO QW	61	61	LSM: -13.8*	SE: 4.1	REF	REF	REF
Thaci 2016	Dupilumab 200 mg Q2W	61	61	LSM: -46.0*	SE: 4.1	-32.2	-42.9 to -21.6	<0.0001

DUP 300	mg Q2W 6	54	64	LSM: -51.2*	SE: 4.1	-37.4	-47.9 to -26.9	<0.0001
DUP 300	mg Q4W 6	55	65	LSM: -48.8*	SE: 4.0	-35.0	-45.4 to -24.6	<0.0001

Short-term data on SCORAD were not available in BREEZE-AD5, AD-UP, and Heads Up. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, REF: reference, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, SD: standard deviation, SE: standard error, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib. *percent change, *North American subgroup.

Table G1.13. Short-Term Efficacy Outcomes: DLQI and CDLQI 35-37,39,40,42,45,46,48,50,51,56,63,64,69-71,80,81,84

					D	LQI			CDLQI					
Study Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value	N	Change from baseline	95% CI	p value		
					Abro	citinib								
						Week 12								
JADE	РВО	77	60	LSM: -4.2	95% CI: -5.9 to -2.5	REF	REF	NR	16	LSM: -3.9	REF	NR		
MONO-1	ABRO 100 mg	156	121	LSM: -7	95% CI: -8.1 to -5.8	-2.8	-4.8 to -0.8	NR	32	LSM: -6.4	-5.2 to 0.1	NR		
	ABRO 200 mg	154	119	LSM: -9.1	95% CI: - 10.3 to -8.0	-4.9	-6.9 to -2.9	NR	32	LSM: -7.5	-6.2 to -0.9	NR		
	РВО	78	70	LSM: -3.9	NR	REF	-5.3 to -2.4	NR	8	LSM: -2.7	-6.1 to 0.8	NR		
JADE MONO-2	ABRO 100 mg	158	140	LSM: -8.3	NR	-4.4 (-6.2 to -2.7)	-9.3 to -7.3	NR	16	LSM: -4.8	-7.2 to -2.5	NR		
WONO-2	ABRO 200 mg	155	139	LSM: -9.8	NR	-5.9 (-7.7 to -4.2)	-10.7 to - 8.8	NR	15	LSM: -9.7	-12.1 to - 7.4	NR		
	PBO	96	NA	NA	NA	NA	NA	NA	96	LSM: -6.3	-7.4 to -5.3	NR		
JADE TEEN	ABRO 100 mg	95	NA	NA	NA	NA	NA	NA	95	LSM: -8.6	-9.6 to -7.5	NR		
	ABO 200 mg	94	NA	NA	NA	NA	NA	NA	94	LSM: -8.7	-9.7 to -7.6	NR		
	РВО	131	131	LSM: -6.2	95% CI: -7.1 to -5.3	NR	NR	NR	NA	NA	NA	NA		
JADE COMPARE	ABRO 100 mg	238	238	LSM: -8.7	95% CI: -9.4 to -8	NR	NR	NR	NA	NA	NA	NA		
COIVIPARE	ABRO 200 mg	226	226	LSM: -11	95% CI: - 11.7 to -10.3	NR	NR	NR	NA	NA	NA	NA		

					D	LQI				CI	DLQI	
	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value	N	Change from baseline	95% CI	p value
	DUP 300 mg	242	241	LSM: -9.9	95% CI: - 10.6 to -9.2	NR	NR	NR	NA	NA	NA	NA
						Week 16						
	РВО	131	131	LSM: -6.2	95% CI: -7.1 to -5.2	NR	NR	NR	NA	NA	NA	NA
	ABRO 100 mg + PBO→ABRO 100 mg	238	238	LSM: -9	95% CI: -9.7 to -8.4	NR	NR	NR	NA	NA	NA	NA
	ABRO 200 mg + PBO→ABRO 200 mg	226	226	LSM: - 11.7	95% CI:-12.4 to -11.1	NR	NR	NR	NA	NA	NA	NA
	DUP 300 mg + Oral PBO→PBO	242	241	LSM: - 10.8	95% CI: - 11.4 to -10.1	NR	NR	NR	NA	NA	NA	NA
					Bari	citinib						
						Week 16						
2005575	РВО	249	249	-2.5	NR	REF	NR	REF	NA	NA	NA	NA
	BARI 1 mg	127	127	-4.6	NR	-2.1	NR	<0.05	NA	NA	NA	NA
ADI	BARI 2 mg	123	123	-4.3	NR	-1.8	NR	<0.05	NA	NA	NA	NA
	BARI 4 mg	125	125	-6.8	NR	-4.3	NR	<0.001	NA	NA	NA	NA
	РВО	244	244	-3.4	NR	REF	NR	REF	NA	NA	NA	NA
BREEZE-	BARI 1 mg	125	125	-5.1	NR	-1.7	NR	NS	NA	NA	NA	NA
AD2	BARI 2 mg	123	123	-7.4	NR	-4.0	NR	<0.001	NA	NA	NA	NA
	BARI 4 mg	123	123	-7.6	NR	-4.2	NR	<0.001	NA	NA	NA	NA
2005575	РВО	147	28	-4.0	1.0	NR	NR	NR	NA	NA	NA	NA
BREEZE- AD5	BARI 1 mg	147	47	-5.5	0.8	NR	-3.9 to 0.9	NR	NA	NA	NA	NA
	BARI 2 mg	146	63	-7.5	0.7	NR	-5.8 to -1.2	<0.001	NA	NA	NA	NA
BREEZE-	PBO + TCS	109	89	LSM: -5.6	SE: 0.6	REF	REF	REF	NA	NA	NA	NA
AD7	BARI 2 mg + TCS	109	99	LSM: -7.5	SE: 0.6	-1.9	-3.6 to -0.3	0.022	NA	NA	NA	NA

					E	DLQI			CDLQI				
Study Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value	N	Change from baseline	95% CI	p value	
	BARI 4 mg + TCS	111	99	LSM: -8.9	SE: 0.9	-3.3	-4.9 to -1.7	<0.001	NA	NA	NA	NA	
Phase II	PBO + TCS	49	49	-6.3	0.8	NR	NR	REF	NA	NA	NA	NA	
Guttman- Yassky	BARI 2 mg + TCS	37	37	-6.9	0.9	NR	NR	NS	NA	NA	NA	NA	
2018	BARI 4 mg + TCS	38	38	-8.0	0.9	NR	NR	NS	NA	NA	NA	NA	
					Tralo	kinumab							
						Week 16							
ECZTRA 1	PBO	197	197	-5	SE: 0.6	REF	REF	REF	NA	NA	NA	NA	
	TRA 300 mg	601	601	-7.1	SE: 0.3	-2.1	-3.4 to -0.8	0.002	NA	NA	NA	NA	
CCTTDA 2	РВО	201	201	-4.9	SE: 0.6	REF	REF	REF	NA	NA	NA	NA	
ECZTRA 2	TRA 300 mg	591	591	-8.8	SE: 0.3	-3.9	-5.2 to -2.6	<0.001	NA	NA	NA	NA	
ECZTRA 2	РВО	91	NR	-5	NR	REF	REF	REF	NA	NA	NA	NA	
Subgroup*	TRA 300 mg	270	NR	-9	NR	LSM: -3.9	-5.8 to -2.0	<0.001	NA	NA	NA	NA	
	PBO + TCS	126	126	-8.8	SE: 0.6	REF	REF	REF	NA	NA	NA	NA	
ECZTRA 3	TRA 300 mg + TCS	252	252	-11.7	SE: 0.4	-2.9	-4.3 to -1.6	<0.001	NA	NA	NA	NA	
					Upad	dacitinib							
						Week 16							
MEASURE	РВО	281			NR	NR	NR	NR	NR	NR	NR	NR	
UP 1	UPA 15 mg	281			NR	NR	NR	NR	NR	NR	NR	NR	
	UPA 30 mg	285			NR	NR	NR	NR	NR	NR	NR	NR	
A 4 5 4 5 L L D 5	РВО	278			NR	NR	NR	NR	NR	NR	NR	NR	
MEASURE UP 2	UPA 15 mg	276			NR	NR	NR	NR	NR	NR	NR	NR	
Ur Z	UPA 30 mg	282			NR	NR	NR	NR	NR	NR	NR	NR	
					Dup	ilumab							
SOLO 1						Week 16							

					C	LQI			CDLQI				
Study Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value	N	Change from baseline	95% CI	p value	
	PBO	224	224	-5.3	0.5	NR	NR	NR	NA	NA	NA	NA	
	DUP 300 mg Q2W	224	224	-9.3	0.4	NR	NR	NR	NA	NA	NA	NA	
	DUP 300 mg QW	223	223	-9	0.4	NR	NR	NR	NA	NA	NA	NA	
	РВО	236	236	-3.6	0.5	NR	NR	NR	NA	NA	NA	NA	
SOLO 2	DUP 300 mg Q2W	233	233	-9.3	0.4	NR	NR	NR	NA	NA	NA	NA	
	DUP 300 mg QW	239	239	-9.5	0.4	NR	NR	NR	NA	NA	NA	NA	
	PBO + TCS	315	315	LSM: - 5.3	SE: 0.3	NR	NR	REF	NA	NA	NA	NA	
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	106	LSM: - 9.7	SE: 0.5	NR	NR	<0.000 1	NA	NA	NA	NA	
	DUP 300 mg + TCS QW	319	319	LSM: - 10.5	SE: 0.3	NR	NR	<0.000 1	NA	NA	NA	NA	
	PBO QW	61	61	2.6	SE: 7.3	REF	REF	REF	NA	NA	NA	NA	
Phase IIb	Dupilumab 200 mg Q2W	61	61	-43.3	SE: 7.2	-45.9	-64.6 to - 27.2	<0.000 1	NA	NA	NA	NA	
Thaci 2016	DUP 300 mg Q2W	64	64	-39.6	SE: 7.0	-42.3	-60.6 to - 23.9	<0.000 1	NA	NA	NA	NA	
	DUP 300 mg Q4W	65	65	-37.4	SE: 6.9	-40.1	-58.3 to - 21.9	<0.000 1	NA	NA	NA	NA	

Short-term data on DLQI and CDLQI were not available in Phase IIb Gooderham 2019, AD-UP, Heads Up, and Phase IIb Guttman-Yassky 2020. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, LSM: least squares mean, mg: milligram, N: total number, NA: not applicable, NR: not reported, NS: not significant, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib. *North American subgroup.

Table G1.14. Short-Term Efficacy Outcomes: POEM^{35-37,39,40,42,45,46,48,50,51,56,63,64,69-71,80,81,84}

					РО	EM		
Study Name	Arms	Sample Size (N)	N	Change from baseline	SD	Diff from PBO	95% CI	p value
			I	Abrocit	inib			
					Week 12			
JADE MONO-1	PBO	77	77	-3.7	95% CI: -5.5 to -1.9	NR	NR	REF
JADE MONO-1	ABRO 100 mg	156	153	-6.8	95% CI: -8.0 to -5.6	-3.1	-5.2 to -0.9	NR
	ABRO 200 mg	154	153	-10.6	95% CI: -11.8 to -9.4	-6.9	-9.0 to -4.7	NR
	РВО	78	78	-3.6	95% CI: -5.3 to -1.9	NR	-5.3 to -1.9	REF
JADE MONO-2	ABRO 100 mg	158	156	-8.7	95% CI: -9.9 to -7.5	-5.1 (-7.2 to -3.1)	-9.9 to -7.5	NR
	ABRO 200 mg	155	154	-11	95% CI: -12.1 to -9.8	-7.4 (-9.5 to -5.3)	-12.1 to -9.8	NR
	РВО	131	131	-5.1	95% CI: -6.3 to -3.9	NR	NR	NR
	ABRO 100 mg	238	238	-9.6	95% CI: -10.1 to -8.6	NR	NR	NR
	ABRO 200 mg	226	226	-12.6	95% CI: -13.6 to -11.7	NR	NR	NR
	DUP 300 mg	242	241	-10.8	95% CI: -11.7 to -9.9	NR	NR	NR
					Week 16			
JADE COMPARE	РВО	131	131	-5	95% CI: -6.3 to -3.8	NR	NR	NR
	ABRO 100 mg + PBO→ABRO 100 mg	238	238	-9.2	95% CI: -10.1 to -8.2	NR	NR	NR
	ABRO 100 mg + PBO→ABRO 100 mg	226	226	-12.5	95% CI:-13.4 to -11.6	NR	NR	NR
	DUP 300 mg + Oral PBO→PBO	242	241	-10.8	95% CI:-11.8 to -9.9	NR	NR	NR
		1	•	Baricit	inib			
					Week 16			
	PBO	249	72	-2.7	SE: 0.8	NR	NR	REF
BREEZE-AD1	BARI 1 mg	127	53	-5.3	SE: 0.9	-2.6	NR	<0.05
	BARI 2 mg	123	52	-6.3	SE: 0.9	-3.6	NR	<0.01
	BARI 4 mg	125	70	-7.8	SE: 0.8	-5.1	NR	<0.001

			POEM									
Study Name	Arms	Sample Size (N)	N	Change from baseline	SD	Diff from PBO	95% CI	p value				
	РВО	244	52	-1.5	NR	REF		REF				
DDEE7E AD2	BARI 1 mg	125	34	-3.9	NR	-2.4	NR	NS				
BREEZE-AD2	BARI 2 mg	123	40	-7.1	NR	-5.6	NR	<0.001				
	BARI 4 mg	123	48	-7.6	NR	-6.1	NR	<0.001				
	РВО	147	147	-2.7	NR	NR	NR	NR				
BREEZE-AD5	BARI 1 mg	147	147	-4.6	NR	NR	-4.9 to 1.1	NR				
	BARI 2 mg	146	146	-7.4	NR	NR	-7.7 to -1.8	<0.001				
	PBO + TCS	109	109	-5.6	0.8	REF	REF	REF				
BREEZE-AD7	BARI 2 mg + TCS	109	109	-8.5	0.7	-2.9	-5.0 to -0.8	0.006				
	BARI 4 mg + TCS	111	111	-10.8	0.7	-5.2	-7.3 to -3.2	<0.001				
Phase II	PBO + TCS	49	49	-3.5	NR	NR	NR	REF				
Guttman-	BARI 2 mg + TCS	37	37	-6.4	NR	NR	NR	NS				
Yassky 2018	BARI 4 mg + TCS	38	38	-7.5	NR	NR	NR	<0.01				
				Tralokin	umab							
					Week 16							
ECZTRA 1	РВО	197	197	-3	0.66	REF	REF	REF				
	TRA 300 mg	601	601	-7.6	0.35	-4.5	-6.0 to -3.1	<0.001				
ECZED A 2	РВО	201	201	-3.7	0.66	REF	REF	REF				
ECZTRA 2	TRA 300 mg	591	591	-8.8	0.33	-5.1	-6.5 to -3.6	<0.001				
	PBO + TCS	126	126	-7.8	0.66	REF	REF	REF				
ECZTRA 3	TRA 300 mg + TCS	252	252	-11.8	0.46	-0.4	-5.6 to -2.4	<0.001				
		-		Upadaci	itinib	-	1					
D					Week 16							
Phase IIb Guttman-	РВО	41	41	1.6	1.4	NR	NR	REF				
Yassky 2020	UPA 15 mg	42	42	8.6	1.4	NR	NR	≤0.001				
,	UPA 30 mg	42	42	12.3	1.4	NR	NR	≤0.001				

					РО	DEM		
Study Name	Arms	Sample Size (N)	N	Change from baseline	SD	Diff from PBO	95% CI	p value
				Dupilu	mab			
					Week 16			
SOLO 1	РВО	224	224	-5.1	0.7	NR	NR	NR
3010 1	DUP 300 mg Q2W	224	224	-11.6	0.5	NR	NR	NR
	DUP 300 mg QW	223	223	-11	0.5	NR	NR	NR
	РВО	236	236	-3.3	0.6	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	233	-10.2	0.5	NR	NR	NR
	DUP 300 mg QW	239	239	-11.3	0.5	NR	NR	NR
	PBO + TCS	315	315	-4.7	0.4	NR	NR	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	106	106	-12.4	0.6	NR	NR	<0.0001
CHRONOS	DUP 300 mg + TCS QW	319	319	-12.5	0.4	NR	NR	<0.0001
	PBO QW	61	61	LSM: -1.1	SE: 0.9	NR	NR	REF
Phase IIb AD-	Dupilumab 200mg Q2W	61	61	LSM: -10.4	SE: 0.9	NR	NR	<0.0001
1021	DUP 300mg Q2W	64	64	LSM: -9.8	SE: 0.9	NR	NR	<0.0001
	DUP 300mg Q4W	65	65	LSM: -9.9	SE: 0.9	NR	NR	<0.0001

Short-term data on POEM were not available in JADE TEEN, Phase IIb Gooderham 2019, MEASURE UP 1, MEASURE UP 2, AD-UP, and Heads Up. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, NS: not significant, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib.

Table G1.15. Short-Term Efficacy Outcomes: Total HADS^{42-46,48,50-56,60,64-66,70,155}

Study					Т	otal HADS		
Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value
				Abrocitinib)			
				We	ek 12			
	PBO	77	77	LSM: -0.2	-0.8 to 0.4	REF	REF	REF
JADE MONO-1	ABRO 100 mg	156	156	LSM: -1.4	-1.8 to - 0.9	-1.1	-19 to -0.4	0.0028
	ABRO 200 mg	154	154	LSM: -1.8	-2.2 to - 1.4	-1.6	-2.3 to -0.9	<0.001
				Baricitinib				
				We	ek 16			
BREEZE-	PBO + TCS	109	109	LSM: -3.2	0.6	REF	REF	REF
AD7	BARI 2 mg + TCS	109	109	LSM: -4.8	0.5	-1.6	-3.1 to -0.1	0.042
	BARI 4 mg + TCS	111	111	LSM: -5.1	0.5	-1.9	-3.5 to -0.4	0.011
				We	ek 16			
ECZTRA 1	PBO	197	197					
	TRA 300 mg	601	601					
ECZTRA 2	РВО	201	201					
ECZTRA Z	TRA 300 mg	591	591					
ECZTRA 3	PBO + TCS	126	126					
ECZTRA 3	TRA 300 mg + TCS	252	252					
				Dupilumab				
				We	ek 16			
SOLO 1	РВО	224	224	-3	0.7	NR	NR	NR
JOLO 1	DUP 300 mg Q2W	224	224	-5.2	0.5	NR	NR	NR
	DUP 300 mg QW	223	223	-5.2	0.5	NR	NR	NR
SOLO 2	РВО	236	236	-0.8	0.4	NR	NR	NR

Study					Т	Total HADS		
Name	Arms	N	N	Change from baseline	SD	Diff from PBO	95% CI	p value
	DUP 300 mg Q2W	233	233	-5.1	0.4	NR	NR	NR
	DUP 300 mg QW	239	239	-5.8	0.4	NR	NR	NR
	PBO + TCS	315	315	-3.6	0.34	NR	NR	REF
LIBERTY AD	DUP 300 mg + TCS Q2W	106	106	-4.9	0.56	NR	NR	0.03
CHRONOS	DUP 300 mg + TCS QW	319	319	-5.2	0.33	NR	NR	0.0004
	PBO QW	61	61	LSM: 0	SE: 0.8	NR	NR	REF
Phase IIb	DUP 200 mg Q2W	61	61	LSM: -4	SE: 0.8	NR	NR	0.0002
Thaci –	DUP 300 mg Q2W	64	64	LSM: -4.3	SE: 0.8	NR	NR	<0.0001
	DUP 300 mg Q4W	65	65	LSM: -2.7	SE: 0.8	NR	NR	0.0103

Short-term data on total HADS were not available in JADE MONO 2, JADE TEEN, JADE COMPARE, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD5, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, MEASURE UP 1, MEASURE UP 2, Heads Up, AD-UP, and Phase IIb Guttman-Yassky 2020. BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids.

Table G1.16. Short-Term Efficacy Outcomes: HADS Anxiety 35-37,39,46,50-56,60,63-66,69,84,155,157

Study	Arms			HADS Anxi	ety		
Name	AIIIS	N Change from baseline		SD	Diff from PBO	95% CI	p value
			Abrociti	nib			
JADE	PBO	76	LSM: -1	95% CI: -1.7 to -0.4	REF	REF	REF
MONO-1	ABRO 100 mg	152	LSM: -1.6	95% CI: -2.0 to -1.1	-0.5	-1.3 to 0.2	0.1675
	ABRO 200 mg	152	LSM: -2.1	95% CI: -2.5 to -1.6	-1	-1.8 to -0.3	0.0085
14.05	РВО	78	LSM: -0.6	95% CI: -1.3 to 0.2	REF	REF	REF
JADE MONO-2	ABRO 100 mg	156	LSM: -1.6	95% CI: -2.1 to -1.1	-1.0	-1.9 to -0.1	NR
1410140 2	ABRO 200 mg	153	LSM: -1.7	95% CI: -2.2 to -1.2	-1.1	-2.0 to -0.2	NR

Study	_			HADS Anx	riety		
Name	Arms	N	Change from baseline	SD	Diff from PBO	95% CI	p value
	PBO	96	LSM: -2.1	95% CI: -2.7 to -1.5	NR	NR	NR
JADE TEEN	ABRO 100 mg	95	LSM: -2	95% CI: -2.6 to -1.4	NR	NR	NR
	ABRO 200 mg	94	LSM: -2.4	95% CI: -3 to -1.8	NR	NR	NR
	PBO	131	LSM: -0.4	95% CI: -0.9 to 0.1	REF	REF	REF
	ABRO 100 mg	238	LSM: -1.2	95% CI: -1.5 to -0.8	-0.7	-1.4 to -0.1	NR
	ABRO 200 mg	226	LSM: -1.6	95% CI: -2.0 to -1.2	-1.2	-1.8 to -0.5	NR
	DUP 300 mg	241	LSM: -1.4	95% CI: -1.7 to -1.0	-1	-1.6 to -0.3	NR
JADE COMPARE				Week 16		•	
COMPARE	PBO	131	LSM: -0.4	95% CI: -0.9 to 0.1	NR	NR	NR
	ABRO 100 mg	238	LSM: -1.2	95% CI: -1.6 to8	NR	NR	NR
	ABRO 200 mg	226	LSM: -2.0	95% CI: -2.4 to -1.6	NR	NR	NR
	DUP 300 mg	241	LSM: -1.5	95% CI: -1.9 to -1.1	NR	NR	NR
				Week 12		•	
Gooderham	PBO	36	-2.6	3.01	NR	NR	NR
2019	ABRO 100 mg	43	-2.8	3.71	NR	NR	NR
	ABRO 200 mg	46	-2.5	3.51	NR	NR	NR
			Baricitiı	nib			
				Week 16			
BREEZE-	PBO + TCS	109	-1.9	0.3	REF	REF	REF
AD7	BARI 2 mg + TCS	109	-2.7	0.3	-0.8	-1.6 to 0	0.051
	BARI 4 mg + TCS	111	-2.8	0.3	-0.9	-1.7 to -0.1	0.028
			Dupilum	nab			
				Week 16			
SOLO 1	PBO	NR	NR	0.7	NR	NR	NR
JULU I	DUP 300 mg Q2W	NR	NR	0.5	NR	NR	NR
	DUP 300 mg QW	NR	NR	0.5	NR	NR	NR
	PBO	NR	NR	0.4	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	NR	NR	0.4	NR	NR	NR
	DUP 300 mg QW	NR	NR	0.4	NR	NR	NR

Study	A		HADS Anxiety								
Name	Arms	N	Change from baseline	SD	Diff from PBO	95% CI	p value				
	PBO QW	61	LSM: -0.4	SE: 0.4	NR	NR	REF				
Phase IIb	DUP 200 mg Q2W	61	LSM: -1.9	SE: 0.4	NR	NR	0.0062				
Thaci 2016	DUP 300 mg Q2W	64	LSM: -2.2	SE: 0.4	NR	NR	0.0011				
	DUP 300 mg Q4W	65	LSM: -1.3	SE: 0.4	NR	NR	0.0808				

Short-term data on HADS Anxiety were not available in BREEZE-AD1, BREEZE-AD2, BREEZE-AD5, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, MEASURE UP 1, MEASURE UP 2, AD-UP, Heads Up, Phase IIb Guttman-Yassky 2020, and LIBERTY AD CHRONOS. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids.

Table G1.17. Short-Term Efficacy Outcomes: HADS Depression^{35-37,39,46,50-56,60,63-67,84,155,157}

Study	A			НА	DS Depression		
Name	Arms	N	Change from baseline	SD	Diff from PBO	95% CI	p value
				Abrocitinib			
				Week 12			
JADE	PBO	76	LSM: -0.2	95% CI: -0.8 to 0.4	REF	REF	REF
MONO-1	ABRO 100 mg	152	LSM: -1.4	95% CI: -1.8 to -0.9	-1.1	-1.9 to -0.4	0.0028
	ABRO 200 mg	152	LSM: -1.8	95% CI: -2.2 to -1.4	-1.6	-2.3 to -0.9	<0.0001
	PBO	78	0.3	95% CI: -0.3 to 0.9	REF	REF	REF
JADE MONO-2	ABRO 100 mg	156	-1.0	95% CI: -1.5 to -0.6	-1.3	-2.1 to -0.6	NR
MONO-2	ABRO 200 mg	153	-1.4	95% CI: -1.8 to -1.0	-1.7	-2.5 to -0.9	NR
	РВО	96	96	LSM: -1	95% CI: -1.5 to -0.5	NR	NR
JADE TEEN	ABRO 100 mg	95	95	LSM: -1.4	95% CI: -1.9 to -0.8	NR	NR
	ABRO 200 mg	94	94	LSM: -1.2	95% CI: -1.7 to -0.6	NR	NR
	PBO	131	LSM: -0.3	95% CI: -0.7 to 0.2	REF	REF	REF
	ABRO 100 mg	238	LSM: -1.3	95% CI: -1.6 to -0.9	-1	-1.6 to -0.4	NR
JADE	ABRO 200 mg	226	LSM: -1.6	95% CI: -1.9 to -1.2	-1.3	-1.9 to -0.7	NR
COMPARE	DUP 300 mg	241	LSM: -1.3	95% CI: -1.6 to -0.9	-1	-1.6 to -0.4	NR
				Week 16	j		
	РВО	131	LSM: -0.3	95% CI: -0.8 to 0.2	NR	NR	NR

Study				HAI	OS Depression		
Name	Arms	N	Change from baseline	SD	Diff from PBO	95% CI	p value
	ABRO 100 mg	238	LSM: -1	95% CI: -1.4 to -0.7	NR	NR	NR
	ABRO 200 mg	226	LSM: -1.6	95% CI: -1.9 to -1.2	NR	NR	NR
	DUP 300 mg	241	LSM: -1.2	95% CI: -1.5 to -0.8	NR	NR	NR
				Week 12			
Gooderham	PBO	36	-0.9	3.96	NR	NR	NR
2019	ABRO 100 mg	43	-2.4	3.74	NR	NR	NR
	ABRO 200 mg	46	-1.8	3.9	NR	NR	NR
				Baricitinib			
	PBO + TCS	109	-1.3	0.3	REF	REF	REF
BREEZE- AD7	BARI 2 mg + TCS	109	-2.1	0.3	-0.7	-1.6 to 0.1	0.083
AD7	BARI 4 mg + TCS	111	-2.3	0.3	-1	-1.0 to -0.2	0.016
				Dupilumab			
				Week 16			
	PBO QW	61	LSM: 0.4	SE: 0.5	NR	NR	REF
Phase IIb	DUP 200 mg Q2W	61	LSM: -2	SE: 0.5	NR	NR	<0.0001
Thaci 2016	DUP 300 mg Q2W	64	LSM: -2	SE: 0.4	NR	NR	<0.0001
	DUP 300 mg Q4W	65	LSM: -1.4	SE: 0.4	NR	NR	0.0036

Short-term data on HADS Depression were not available in BREEZE-AD1, BREEZE-AD2, BREEZE-AD5, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, MEASURE UP 1, MEASURE UP 2, AD-UP, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, and LIBERTY AD CHRONOS. ABRO: abrocitinib, BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids.

Table G1.18. Long-Term Efficacy Outcomes: IGA Response Rates^{43,44,50,54,55,63-65,76,78,82,107,158,159}

Charles Name	A					IGA response					
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value			
		Abro	ocitinib								
			Weel	48							
	ABRO 100 mg	595	84	287	29.1	NR	NR	NR			
	ABRO 200 mg	521	99	250	39.5	NR	NR	NR			
		1	Veek 48 (Re	spond	ers)						
JADE EXTEND	ABRO 100 mg	NR	49	92	53.3	NR	NR	NR			
Subgroup 1*	ABRO 200 mg	NR	78	136	57.4	NR	NR	NR			
		We	eek 24 (Non	respor	nders)						
	ABRO 100 mg	NR	65	290	22.4	NR	NR	NR			
	ABRO 200 mg	NR	59	221	26.7	NR	NR	NR			
		We	eek 48 (Non	respor	nders)						
	ABRO 100 mg	NR	49	224	21.9	NR	NR	NR			
	ABRO 200 mg	NR	47	172	27.3	NR	NR	NR			
JADE EXTEND	Week 32										
Subgroup 2 [†]	ABRO 100 mg	130	25	71	35.2	NR	NR	NR			
Jubgi oup 2	ABRO 200 mg	73	17	36	47.2	NR	NR	NR			
		Bari	icitinib								
			Weel	32							
	BARI 2 mg					NR	NR	NR			
DD5575 AD2			Weel	40							
BREEZE-AD3	BARI 2 mg					NR	NR	NR			
			Weel	κ 68		1		J.			
	BARI 2 mg					NR	NR	NR			
	_		Weel	16				I			
BREEZE-AD6	BARI 2 mg	146	39	146	27	NR	NR	NR			
		I	Weel	32	I	<u>l</u>					

Study Nama	Arms	N				IGA response				
ECZTRA 1 and 2 OLE (Initial nonresponders) ECZTRA 3	Arms	IN	n	N	%	Diff from PBO	95% CI	p value		
	BARI 2 mg	146	56	146	38.2	NR	NR	NR		
			Week	52						
	BARI 2 mg	146	46	146	31.3	NR	NR	NR		
		Tralo	kinumab	•				•		
		Wee	k 52 (Mainte	enance	Period)				
ECZEDA 4	РВО	35	9	19	47.4	REF	REF	REF		
ECZTRA 1	TRA 300 mg Q2W	68	20	39	51.3	6	-21.8 to 33.7	0.68		
	TRA 300 mg Q4W	76	14	36	38.9	-9.5	-37.1 to 18.0	0.50		
	РВО	46	7	28	25	REF	REF	REF		
ECZTRA 2	TRA 300 mg Q2W	91	32	54	59.3	34.1	13.4 to 54.9	0.004		
	TRA 300 mg Q4W	89	22	49	44.9	19.9	-1.2 to 40.9	0.084		
ECZTRA 1 and 2	TRA 300 mg Q2W + TCS	686	138	686	20.1	NR	NR	NR		
OLE (Initial nonresponders)	TRA 300 mg Q2W + TCS (no response at week 24 group)	NR	NR	NR	13.9	NR	NR	NR		
	Week 32 (Maintenance Period)									
	TRA 300 mg Q2W + TCS (TRA nonresponders)	95	NR	NR	30.5	NR	22.2 to 40.4	NR		
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	69	NR	NR	89.6	NR	77.8 to 99.5	NR		
	TRA 300 mg Q4W + TCS (TRA responders)	69	NR	NR	77.6	NR	64.1 to 87.0	NR		
			Week	¢ 56						
ECZTEND	TRA 300 mg Q2W (Week 56 Cohort)	612	255 [‡]	612	41.7	NR	NR	NR		
	TRA 300 mg Q2W (2-year Cohort)	345	NR	NR	NR	NR	NR	NR		
		Upac	lacitinib							
			Week	< 16						
Phase IIb Guttman-	РВО→РВО	8	0	8	0	NR	NR	NR		
Yassky 2020	UPA 7.5 mg→PBO	13	3	13	7.7	NR	NR	NR		
	UPA 15 mg→PBO	17	11	17	47.1	NR	NR	NR		

Ctudy Names	A	N				IGA response					
Study Name	Arms	l N	n	N	%	Diff from PBO	95% CI	p value			
	UPA 30 mg→PBO	13	10	13	61.5	NR	NR	NR			
	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR			
	UPA 7.5 mg → UPA 7.5 mg	11	1	11	9.1	NR	NR	NR			
	UPA 15 mg→UPA 15 mg	12	3	12	25	NR	NR	NR			
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR			
	START OF RESCUE W/ UPA 30mg										
	РВО→РВО	8	0	8	0	NR	NR	NR			
	UPA 7.5 mg→PBO	13	0	13	0	NR	NR	NR			
	UPA 15 mg→PBO	17	0	17	0	NR	NR	NR			
	UPA 30 mg→PBO	13	0	13	0	NR	NR	NR			
	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR			
	UPA 7.5 mg→UPA 7.5 mg	11	0	11	0	NR	NR	NR			
	UPA 15 mg→UPA 15 mg	12	0	12	0	NR	NR	NR			
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR			
	8 WEEKS POST-RESCUE										
	РВО→РВО	8	4	8	50	NR	NR	NR			
	UPA 7.5 mg→PBO	12	7	12	58.3	NR	NR	NR			
	UPA 15 mg→PBO	16	15	16	93.8	NR	NR	NR			
	UPA 30 mg→PBO	13	9	13	69.2	NR	NR	NR			
	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR			
	UPA 7.5 mg→UPA 7.5 mg	10	1	10	10	NR	NR	NR			
	UPA 15 mg→UPA 15 mg	9	2	9	22.2	NR	NR	NR			
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR			
		Dup	ilumab								
D.E.D.T.V. A.D.			Week	¢ 52							
BERTY AD HRONOS	PBO + TCS	264	33	264	13	REF	REF	REF			
	DUP 300 mg + TCS Q2W	89	32	89	36	24	12.7 to 34.2	<0.000			

Chudu Nome	Auros	N	IGA response									
Study Name	Arms	IN	n	N	%	Diff from PBO	95% CI	p value				
	DUP 300 mg + TCS QW	270	108	270	40	28	20.4 to 34.6	<0.0001				
	Week 36											
	РВО	83	9	63	14.3	NR	NR	NR				
AD SOLO- CONTINUE	DUP 300 mg Q8W	84	21	64	32.8	NR	NR	NR				
CONTINUE	DUP 300 mg Q4W	86	29	66	43.9	NR	NR	NR				
	DUP 300 mg QW/Q2W	169	68	126	54	NR	NR	NR				

Long-term data on IGA were not available in Heads Up long-term outcomes. BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, LTE: long-term extension, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, REF: reference, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, TCS: topical corticosteroids, TRA: tralokinumab, %: percent. *JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup, ‡Non-responder imputation.

Table G1.19. Long-Term Efficacy Outcomes: EASI 75^{43,44,50,54,55,63-65,76,78,82,83,107,158,159}

						EASI 75				
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value		
		Abrocitinib								
			Week	48						
	ABRO 100 mg	595	132	289	45.9	NR	NR	NR		
	ABRO 200 mg	521	155	252	61.7	NR	NR	NR		
		Wee	k 48 (Res	sponders)						
	ABRO 100 mg	NR	106	153	69.3	NR	NR	NR		
IADE EVTEND Cubarous 1*	ABRO 200 mg	NR	147	208	70.7	NR	NR	NR		
JADE EXTEND Subgroup 1*		Week	24 (Nonr	esponders)						
	ABRO 100 mg	NR	91	203	44.8	NR	NR	NR		
	ABRO 200 mg	NR	68	126	54	NR	NR	NR		
	Week 48 (Nonresponders)									
	ABRO 100 mg	NR	58	165	35.2	NR	NR	NR		
	ABRO 200 mg	NR	48	101	47.5	NR	NR	NR		
			Week	32						
JADE EXTEND Subgroup 2 [†]	ABRO 100 mg	130	21	31	67.7	NR	NR	NR		
	ABRO 200 mg	73	16	20	80	NR	NR	NR		
		Baricitinib								
			Week	32						
	BARI 2 mg					NR	NR	NR		
			Week	40				1		
BREEZE-AD3	BARI 2 mg					NR	NR	NR		
			Week	68		-		•		
	BARI 2 mg					NR	NR	NR		
			Week	16						
BREEZE-AD6	BARI 2 mg	146	58	146	40	NR	NR	NR		

						EASI 75		
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value
			Week	32				
	BARI 2 mg	146	75	146	51.4	NR	NR	NR
			Week	52				
	BARI 2 mg	146	71	146	48.6	NR	NR	NR
	Traloki	numab						
		Week 52	(Mainte	nance perio	d)			
ECZTRA 1	PBO	35	10	30	33.3	REF	REF	REF
ECZINA I	TRA 300 mg Q2W	68	28	47	59.6	21.2	-0.2 to 42.6	0.056
	TRA 300 mg Q4W	76	28	57	49.1	11.7	-8.7 to 32.0	0.27
	PBO	46	9	42	21.4	REF	REF	REF
ECZTRA 2	TRA 300 mg Q2W	91	43	77	55.8	33.7	17.3 to 50.0	<0.001
	TRA 300 mg Q4W	89	37	74	51.4	30	13.7 to 46.4	0.001
ECZTRA 1 and 2 OLE (Initial	686	294	686	42.9	NR	NR	NR	NR
nonresponders)	NR	NR	NR	25.7	NR	NR	NR	NR
		Week 32	(Mainte	nance perio	d)	1		
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA nonresponders)	95	NR	NR	55.8	NR	45.8 to 65.4	NR
	TRA 300 mg Q2W + TCS (TRA responders)	69	NR	NR	92.5	NR	83.7 to 96.8	NR
	TRA 300 mg Q4W + TCS (TRA responders)	69	NR	NR	90.8	NR	81.5 to 95.7	NR
		_	Week	56		T	1	
ECZTEND	TRA 300 mg Q2W (Week 56 Cohort)	612	425 [‡]	612	69.4	NR	NR	NR
	TRA 300 mg Q2W (2-year Cohort)	345	272 [‡]	345	78.8	NR	NR	NR
	Upada	citinib						
		1	Week	24	1	T	1	,
Heads Up	DUP 300 mg	344	205	344	59.5	NR	NR	NR
	UPA 30 mg	348	223	348	64.2	NR	NR	NR
Phase IIb Guttman-Yassky 2020			Week	16				

						EASI 75											
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value									
	PBO→PBO	8	0	8	0	NR	NR	NR									
	UPA 7.5 mg→PBO	13	3	13	23.1	NR	NR	NR									
	UPA 15 mg→PBO	17	11	17	64.7	NR	NR	NR									
	UPA 30 mg→PBO	13	10	13	76.9	NR	NR	NR									
	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR									
	UPA 7.5 mg→UPA 7.5 mg	11	1	11	9.1	NR	NR	NR									
	UPA 15 mg→UPA 15 mg	12	6	12	50	NR	NR	NR									
	UPA 30 mg→UPA 30 mg	3	2	3	66.7	NR	NR	NR									
	S	TART OF	RESCUE	W/ UPA 30 r	ng												
	PBO→PBO	8	0	8	0	NR	NR	NR									
	UPA 7.5 mg→PBO	13	0	13	0	NR	NR	NR									
	UPA 15 mg→PBO	17	0	17	0	NR	NR	NR									
	UPA 30 mg→PBO	13	0	13	0	NR	NR	NR									
	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR									
	UPA 7.5 mg→UPA 7.5 mg	11	0	11	0	NR	NR	NR									
	UPA 15 mg→UPA 15 mg	12	0	12	0	NR	NR	NR									
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR									
		8 WI	EEKS POS	T-RESCUE													
	PBO→PBO	8	4	8	50	NR	NR	NR									
	UPA 7.5 mg→PBO	12	7	12	58.3	NR	NR	NR									
	UPA 15 mg→PBO	16	15	16	93.8	NR	NR	NR									
	UPA 30 mg→PBO	13	9	13	69.2	NR	NR	NR									
	PBO→UPA 30 mg	1	1	1	100	NR	NR	NR									
	UPA 7.5 mg→UPA 7.5 mg	10	3	10	30	NR	NR	NR									
	UPA 15 mg→UPA 15 mg	9	5	9	55.6	NR	NR	NR									
	UPA 30 mg → UPA 30 mg	3	1	3	33.3	NR	NR	NR									
	Dupilu	mab															

						EASI 75							
Study Name	Arms	N	58 89 65 44 32.5 to 54.7 <0.00										
	Week 52												
LIBERTY AD CHRONOS	PBO + TCS	264	57	264	22	REF	REF	REF					
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	89	58	89	65	44	32.5 to 54.7	<0.0001					
	DUP 300 mg + TCS QW	270	173	270	64	43	34.9 to 50.1	<0.0001					
	Week 36												
	PBO	83	24	79	30.4	NR	NR	NR					
AD SOLO-CONTINUE	DUP 300 mg Q8W	84	45	82	54.9	NR	NR	NR					
	DUP 300 mg Q4W	86	49	84	58.3	NR	NR	NR					
	DUP 300 mg QW/Q2W	169	116	162	71.6	NR	NR	NR					

BARI: baricitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, LTE: long-term extension, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup, ‡non-responder imputation (NRI).

Table G1.20. Long-Term Efficacy Outcomes: EASI 50 and $90^{50,54,55,64,65,76,78,83,107}$

						EASI 5	60					EASI 9	0	
Study Name	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
						A	brocitinib							
JADE							Week 4	8						
EXTEND	ABRO 100 mg	595	NR	NR	NR	NR	NR	NR	84	289	29.2	NR	NR	NR
Subgroup 1*	ABRO 200 mg	521	NR	NR	NR	NR	NR	NR	103	252	40.7	NR	NR	NR
JADE	Week 32													
EXTEND	ABRO 100 mg	130	NR	NR	NR	NR	NR	NR	27	68	39.7	NR	NR	NR
Subgroup 2 [†]	ABRO 200 mg	73	NR	NR	NR	NR	NR	NR	22	37	59.5	NR	NR	NR
		l		ı		Tra	alokinumab	•	ı		1			1
						We	ek 32 (Mainten	ance period	d)					
	TRA 300 mg Q2W + TCS (TRA nonresponders)	95	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	69	NR	NR	98.6	NR	NR	NR	NR	NR	72.5	NR	NR	NR
	TRA 300 mg Q4W + TCS (TRA responders)	69	NR	NR	91.3	NR	NR	NR	NR	NR	63.8	NR	NR	NR
			•	,			Week 5	6			•	•		1
ECZTEND	TRA 300 mg Q2W (Week 56 Cohort)	612	488 [‡]	612	79.6	NR	NR	NR	313	612	51.1	NR	NR	NR
	TRA 300 mg Q2W (2-year Cohort)	345	314 [‡]	345	91	NR	NR	NR	195	345	56.5	NR	NR	NR
						Ul	padacitinib	-						
Heads Up							Week 2	.4						
neaus Up	DUP 300 mg	344	NR	NR	NR	NR	NR	NR	164	344	47.6	NR	NR	NR

Study Name						EASI 5	50					EASI 9	00	
	Arms	N	n	N	%	Diff from PBO	95% CI	p value	n	N	%	Diff from PBO	95% CI	p value
	UPA 30 mg	348	NR	NR	NR	NR	NR	NR	193	348	55.6	NR	NR	NR
							Dupilumab							
							Week 5	2						
	PBO + TCS	264	79	264	30	REF	REF	REF	41	264	16	REF	REF	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	89	70	89	79	49	38.6 to 58.9	<0.0001	45	89	51	35	23.8 to 46.3	<0.0001
	DUP 300 mg + TCS QW	270	189	270	70	40	32.3 to 47.9	<0.0001	137	270	51	35	27.8 to 42.6	<0.0001
							Week 3	6						
	РВО	83	33	83	39.8	NR	NR	NR	10	55	18.2	NR	NR	NR
AD SOLO- CONTINUE	DUP 300 mg Q8W	84	46	84	54.8	NR	NR	NR	16	49	32.7	NR	NR	NR
	DUP 300 mg Q4W	86	52	86	60.5	NR	NR	NR	33	56	58.9	NR	NR	NR
	DUP 300 mg QW/Q2W	169	124	169	73.4	NR	NR	NR	75	116	64.7	NR	NR	NR

Long-term data on EASI 50 and EASI 90 were not available for the following long-term trials: BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, and Phase IIb Guttman-Yassky 2020. CI: confidence interval, Diff: difference, DUP: dupilumab, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, TCS: topical corticosteroids, TRA: tralokinumab, %: percent. *JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup, ‡last observation carried forward (LOCF).

Table G1.21. Long-Term Efficacy Outcomes: PP-NRS ≥4-Point Change 50,54,76,83,107,158

Study Name	Arms	N		from baseline)	seline)							
			n	n N % Diff from PBC		Diff from PBO	95% CI	p value				
	Abrocitinib											
JADE	Week 48											
EXTEND	ABRO 100 mg	595	105	280	37.6	NR	NR	NR				

Study	Arms	N		Itch o	r PP-NRS (≥	4 point improvement	from baseline)	
Name			n	N	%	Diff from PBO	95% CI	p value
Subgroup	ABRO 200 mg	521	125	246	50.9	NR	NR	NR
1*			We	ek 48 (Respor	nders)			
	ABRO 100 mg	NR	63	122	51.6	NR	NR	NR
	ABRO 200 mg	NR	116	168	69	NR	NR	NR
		·	Week	24 (Nonresp	onders)			
	ABRO 100 mg	NR	63	195	32.3	NR	NR	NR
	ABRO 200 mg	NR	57	138	41.4	NR	NR	NR
			Week	48 (Nonresp	onders)			
	ABRO 100 mg	NR	38	142	26.8	NR	NR	NR
	ABRO 200 mg	NR	31	101	30.7	NR	NR	NR
JADE				Week 32				
EXTEND Subgroup	ABRO 100 mg	130	17	45	37.8	NR	NR	NR
2 [†]	ABRO 200 mg	73	17	22	77.3	NR	NR	NR
			Upad	acitinib				
				Week 24				
Heads Up	DUP 300 mg	344	141	336	41.9	NR	NR	NR
	UPA 30 mg	348	171	340	50.2	NR	NR	NR
				Week 16				
	PBO→PBO	8	0	6	0	NR	NR	NR
	UPA 7.5 mg→PBO	13	3	12	25	NR	NR	NR
Phase IIb	UPA 15 mg→PBO	17	9	14	64.3	NR	NR	NR
Guttman- Yassky	UPA 30 mg→PBO	13	9	10	90	NR	NR	NR
2020	PBO→UPA 30 mg	1	0	1	0	NR	NR	NR
	UPA 7.5 mg→UPA 7.5 mg	11	3	11	27.3	NR	NR	NR
	UPA 15 mg→UPA 15 mg	12	7	10	70	NR	NR	NR
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR

Study	Arms	N		Itch o	r PP-NRS (≥	4 point improvement	from baseline)					
Name			n	N	%	Diff from PBO	95% CI	p value				
			START O	F RESCUE W/	UPA 30mg							
	PBO→PBO	8	0	6	0	NR	NR	NR				
	UPA 7.5 mg→PBO	13	3	13	23.1	NR	NR	NR				
	UPA 15 mg→PBO	17	0	14	0	NR	NR	NR				
	UPA 30 mg→PBO	13	0	10	0	NR	NR	NR				
	PBO→UPA 30 mg	1	1	1	100	NR	NR	NR				
	UPA 7.5 mg→UPA 7.5 mg	11	3	11	27.3	NR	NR	NR				
	UPA 15 mg→UPA 15 mg	12	5	10	50	NR	NR	NR				
	UPA 30 mg→UPA 30 mg	3	0	3	0	NR	NR	NR				
	8 WEEKS POST-RESCUE											
	РВО→РВО	8	4	6	66.7	NR	NR	NR				
	UPA 7.5 mg→PBO	12	7	12	58.3	NR	NR	NR				
	UPA 15 mg→PBO	16	12	14	85.7	NR	NR	NR				
	UPA 30 mg→PBO	13	8	10	80	NR	NR	NR				
	PBO→UPA 30 mg	1	1	1	100	NR	NR	NR				
	UPA 7.5 mg→UPA 7.5 mg	10	5	11	45.4	NR	NR	NR				
	UPA 15 mg→UPA 15 mg	9	8	10	80	NR	NR	NR				
	UPA 30 mg→UPA 30 mg	3	2	3	66.7	NR	NR	NR				
			Dupi	lumab								
				Week 52								
LIBERTY AD	PBO + TCS	264	32	249	13	REF	REF	REF				
CHRONOS	DUP 300 mg + TCS Q2W	89	44	86	51	38	27.0 to 49.7	<0.0001				
	DUP 300 mg + TCS QW	270	97	249	39	26	18.8 to 33.5	<0.0001				
VD 5010				Week 36								
AD SOLO- CONTINUE	РВО	83	10	78	12.8	NR	NR	NR				
	DUP 300 mg Q8W	84	21	79	26.6	NR	NR	NR				

Study Name	Arms	N	Itch or PP-NRS (≥4 point improvement from baseline)								
Ivallie		n	N	%	Diff from PBO	95% CI	p value				
	DUP 300 mg Q4W	86	27 82 32.9 NR NR					NR			
	DUP 300 mg QW/Q2W	169	78 159 49.1 NR NR NR								

Long term data on PP-NRS were not available for the following long-term trials: BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, ECZTRA 3, and ECZTEND. CI: confidence interval, Diff: difference, DUP: dupilumab, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, TCS: topical corticosteroids, %: percent. *JADE MONO-1 & 2 and JADE COMPARE subgroup, †JADE COMPARE dupilumab nonresponder subgroup.

Table G1.22. Long-Term Efficacy Outcomes: SCORAD^{50,54}

				SCORAD		
Study Name	Arms	N	N	Change from baseline	SD	p value
		Dupilumab				
			Week 52			
LIBERTY AD CHRONOS	PBO + TCS	264	NR	LSM: -34.1*	SE: 1.88	REF
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	89	NR	LSM: -66.2*	SE: 3.14	<0.0001
	DUP 300 mg + TCS QW	270	NR	LSM: -66.1*	SE: 1.85	<0.0001
			Week 36			
	PBO	83	NR	-2.7 [†]	0.3	NR
LIBERTY AD SOLO-CONTINUE	DUP 300 mg Q8W	84	NR	-3.3 [†]	0.3	NR
	DUP 300 mg Q4W	86	NR	-4.2 [†]	0.2	NR
	DUP 300 mg QW/Q2W	169	NR	-4.3 [†]	0.2	NR

Long-term data on SCORAD were not available for the following long-term trials: JADE EXTEND, BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, and Phase IIb Guttman-Yassky 2020. There were no Difference vs. placebo or 95% confidence intervals available for long-term SCORAD. CI: confidence interval, Diff: difference, DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids. *percent change, †SCORAD sleep loss.

Table G1.23. Long-Term Efficacy Outcomes: DLQI^{50,54,64}

Study				DLQI							
Name	Arms	N	N	Change from baseline	SD	p value					
	Tralok	inumab									
	Week 32	2 (Mainte	nance ¡	period)							
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA nonresponders)	95	95	-9.81	0.94*	NR					
	TRA 300 mg Q2W + TCS (TRA responders)	69	69	-14.2	1.16*	NR					
	TRA 300 mg Q4W + TCS (TRA responders)	69	69	-13.64	1.13*	NR					
	Dupi	lumab									
	Week 52										
LIBERTY	PBO + TCS	264	264	LSM: -5.6	SE: 0.36	REF					
AD CHRONOS	DUP 300 mg + TCS Q2W	89	89	LSM: -10.9	SE: 0.59	<0.0001					
	DUP 300 mg + TCS QW	270	270	LSM: -10.7	SE: 0.36	<0.0001					
	Week 36										
45.601.0	PBO	83	NR	-3.1	0.52	NR					
AD SOLO- CONTINUE	DUP 300 mg Q8W	84	NR	-1.5	0.46	NR					
CONTINUE	DUP 300 mg Q4W	86	NR	-0.3	0.48	NR					
	DUP 300 mg QW/Q2W	169	NR	0.2	0.33	NR					

Long-term data on DLQI were not available for the following long-term trials: JADE EXTEND, BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, ECZTEND, Heads Up, and Phase IIb Guttman-Yassky 2020. There were data available for CDLQI and no Difference vs. placebo or 95% confidence interval data available for long-term DLQI. DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids, TRA: tralokinumab. *digitized estimate.

Table G1.24. Long-Term Efficacy Outcomes: POEM^{50,54}

Study Name	Arms	N	POEM					
			N	Change from baseline	SD	p value		
	Di							
			Week 52					
LIDERTY AD CURONOC	PBO + TCS	264	264	LSM: -5.3	SE: 0.5	REF		
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	89	89	LSM: -13.7	SE: 0.8	<0.0001		
	DUP 300 mg + TCS QW	270	270	LSM: -12.7	SE: 0.5	<0.0001		
			Week 36					
	PBO	83	NR	-7	0.9	NR		
LIBERTY AD SOLO-CONTINUE	DUP 300 mg Q8W	84	NR	-2.8	0.8	NR		
	DUP 300 mg Q4W	86	NR	-0.8	0.7	NR		
	DUP 300 mg QW/Q2W	169	NR	0.3	0.6	NR		

Long-term data on DLQI were not available for the following long-term trials: JADE EXTEND, BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, and Phase IIb Guttman-Yassky 2020. CI: confidence interval, Diff: difference, DUP: dupilumab, LSM: least squares mean, mg: milligram, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, REF: reference, SD: standard deviation, SE: standard error, TCS: topical corticosteroids.

Table G1.25. Outcomes by subgroup: IGA stratified by age 35,36,39,53,60,79

						IGA		
Study Name	Arms	Category	N	n	%	Diff from PBO	95% CI	p value
			Abroci	tinib				
				We	ek 12			
	РВО		16	2	12.5	NR	NR	NR
	ABRO 100 mg	<18 years	34	9	26.5	NR	NR	NR
JADE MONO-1	ABRO 200 mg		33	9	27.3	NR	NR	NR
	РВО		60	4	6.7	NR	NR	NR
	ABRO 100 mg	≥18 years	122	28	23	NR	NR	NR
	ABRO 200 mg		120	58	48.3	NR	NR	NR
	РВО		7	0	0	REF	REF	NR
	ABRO 100 mg	<18 years	16	2	12.5	12.5	-11.7 to 36.7	NR
	ABRO 200 mg	_	15	6	40	40	9.4 to 70.6	NR
JADE MONO-2	РВО		70	7	10	REF	REF	NR
	ABRO 100 mg	≥18 years	193	42	30.2	20.2	9.8 to 30.6	NR
	ABRO 200 mg	_	140	53	37.9	27.9	17.2 to 38.5	NR
	ı	U	padac	itinib	I	1		I.
				We	ek 16			
	РВО		241	21	8.6	NR	NR	REF
	UPA 15 mg	Adults	239	119	49.9	NR	NR	<0.001
MEASURE UP 1	UPA 30 mg		243	148	60.8	NR	NR	<0.001
	РВО		40	3	7.5	NR	NR	REF
	UPA 15 mg	Adolescents	42	16	38.1	NR	NR	<0.001
	UPA 30 mg		42	29	69	NR	NR	<0.001
	РВО		242	12	5	NR	NR	REF
MEASURE UP 2	UPA 15 mg	Adults	243	93	38.3	NR	NR	<0.001
	UPA 30 mg		247	125	50.5	NR	NR	<0.001

						IGA		
Study Name	Arms	Category	N	n	%	Diff from PBO	95% CI	p value
	РВО		36	1	2.8	NR	NR	REF
	UPA 15 mg	Adolescents	33	14	42.4	NR	NR	<0.001
	UPA 30 mg PBO + TCS		35	22	62.5	NR	NR	<0.001
			264	30	11.4	NR	NR	REF
	UPA 15 mg + TCS	Adults	261	107	40.9	NR	NR	<0.001
AD-UP	UPA 30 mg + TCS		260	150	57.7	NR	NR	<0.001
AD-UP	PBO + TCS		40	3	7.5	NR	NR	REF
	UPA 15 mg + TCS UPA 30 mg + TCS		39	12	30.8	NR	NR	<0.01
			37	24	64.9	NR	NR	<0.001

Data on IGA stratified by age were not available in JADE TEEN, JADE COMPARE, JADE EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD3, BREEZE-AD5, BREEZE-AD6, BREEZE-AD7, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, LIBERTY AD CHRONOS, LIBERTY AD SOLO-CONTINUE, and Phase IIb Thaci 2016. ABRO: abrocitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, REF: reference, %: percent.

Table G1.26. Outcomes by subgroup: IGA stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,65}

Table G1.27. Outcomes by subgroup: EASI 75 Stratified by Age 35,36,60-62,79

							EASI 75		
Study Name	Arms	Category	N	N	n	%	Diff from PBO	95% CI	p value
			Ab	rocitinib					
				We	ek 12				
	РВО		8	16	2	12.5	NR	NR	NR
	ABRO 100 mg	<18 years	17	34	15	44.1	NR	NR	NR
JADE	ABRO 200 mg		15	33	18	54.5	NR	NR	NR
MONO-1	РВО		70	60	7	11.7	NR	NR	NR
	ABRO 100 mg	≥18 years	141	122	47	38.5	NR	NR	NR
	ABRO 200 mg		140	120	78	65	NR	NR	NR
	РВО		17	7	0	0	REF	REF	NR
	ABRO 100 mg	<18 years	34	16	7	43.8	43.8	13.5 to 74.0	NR
JADE MONO	ABRO 200 mg		33	15	9	60	60	29.4 to 90.6	NR
2	РВО		60	70	8	11.4	REF	REF	NR
	ABRO 100 mg	≥18 years	122	139	62	44.6	33.2	22.0 to 44.3	NR
	ABRO 200 mg		121	193	85	61.2	49.7	38.7 to 60.7	NR
			Upa	dacitinib					
				We	ek 16				
	РВО		241	241	43	17.7	NR	NR	REF
MEASURE	UPA 15 mg	Adults	239	239	166	69.3	NR	NR	<0.001
UP 1	UPA 30 mg		243	243	192	79.1	NR	NR	<0.001
	РВО	Adolescents	40	40	3	8.3	NR	NR	REF
	UPA 15 mg	Adolescents	42	42	30	71.4	NR	NR	<0.001

							EASI 75		
Study Name	Arms	Category	N	N	n	%	Diff from PBO	95% CI	p value
	UPA 30 mg		42	42	35	83.3	NR	NR	<0.001
	РВО		242	242	32	13.2	NR	NR	REF
	UPA 15 mg	Adults	243	243	144	59.3	NR	NR	<0.001
MEASURE	UPA 30 mg		247	247	180	72.7	NR	NR	<0.001
UP 2	РВО		36	36	5	13.9	NR	NR	REF
	UPA 15 mg	Adolescents	33	33	22	66.7	NR	NR	<0.001
	UPA 30 mg		35	35	26	74.5	NR	NR	<0.001
	PBO + TCS		264	264	68	25.9	NR	NR	REF
	UPA 15 mg + TCS	Adults	261	261	172	65.8	NR	NR	<0.001
AD-UP	UPA 30 mg + TCS		260	260	201	77.3	NR	NR	<0.001
AD-UP	PBO + TCS		40	40	12	30	NR	NR	REF
	UPA 15 mg + TCS	Adolescents	39	39	22	56.4	NR	NR	<0.05
	UPA 30 mg + TCS		37	37	28	75.7	NR	NR	<0.001

Data on EASI 75 stratified by age were not available in JADE TEEN, JADE COMPARE, JAD EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD3, BREEZE-AD5, BREEZE-AD6, BREEZE-AD7, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, LIBERTY AD CHRONOS, LIBERTY AD SOLO-CONTINUE, and Phase IIb Thaci 2016. ABRO: abrocitinib, CI: confidence interval, Diff: difference, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, REF: reference, UPA: upadacitinib, %: percent.

Table G1.28. Outcomes by subgroup: EASI 75 Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,55,65}

Table G1.29. Outcomes by subgroup: EASI 50 and 90 Stratified by Age^{39,55,65,75}

Charles Name	0	Cataaaa		EAS	I 50			EAS	51 90	
Study Name	Arms	Category	N	n	%	p value	N	n	%	p value
				Abrociti	inib					
					Week 12					
	РВО								12.5	NR
14.05	ABRO 100 mg	<18 years							20.6	NR
JADE MONO-1	ABRO 200 mg								30.3	NR
	РВО								3.3	NR
	ABRO 100 mg	≥18 years							18	NR
	ABRO 200 mg								40.8	NR
	РВО								0	NR
	ABRO 100 mg	<18 years							12.5	NR
JADE	ABRO 200 mg								33.3	NR
MONO-2	РВО								4.3	NR
	ABRO 100 mg	≥18 years							25.2	NR
	ABRO 200 mg								38.1	NR
				Upadaci	tinib					
					Week 16					
	РВО									
	UPA 15 mg	Adults								
MEASURE UP 1	UPA 30 mg									
01 1	РВО									
	UPA 15 mg	Adolescents								
	UPA 30 mg									
	РВО									
MEASURE UP 2	UPA 15 mg	Adults								
	UPA 30 mg									

Charles Name		Catalana		EAS	1 50		EASI 90 N n % p			
Study Name	Arms	Category	N	n	%	p value	N	n		p value
	РВО									
	UPA 15 mg	Adolescents								
	UPA 30 mg	7								
	PBO + TCS									
	UPA 15 mg + TCS	Adults								
AD 11D	UPA 30 mg + TCS									
AD-UP	PBO + TCS									
	UPA 15 mg + TCS	Adolescents								
	UPA 30 mg + TCS									

Data on EASI 50 and EASI 90 stratified by age were not available for JADE TEEN, JADE COMPARE, JADE EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD3, BREEZE-AD5, BREEZE-AD6, BREEZE-AD7, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, LIBERTY AD CHRONOS, LIBERTY AD SOLO-CONTINUE, and Phase IIb Thaci 2016. ABRO: abrocitinib, CI: confidence interval, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, UPA: upadacitinib, %: percent.

Table G1.30. Outcomes by subgroup: EASI 50 and 90 Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,55,65}

Table G1.31. Outcomes by subgroup: PP-NRS Change from Baseline and ≥3- or ≥4-Point Change Stratified by Age^{39,53,55,75}

			IA-II	- DD AIDC Character from Date	- 12	PP-NRS	S ≥4-point	Change
Study Name	Arms	Category	itch o	r PP-NRS Change from Bas	eiine	N	≥4-poin	t Change
			N	Change from baseline	SD	IN	n	%
			Abro	ocitinib				
				Week 12				
	РВО		NR		NR			7.1
	ABRO 100 mg	<18 years	NR		NR			33.3
JADE MONO-1	ABRO 200 mg		NR		NR			47.8
	РВО		NR		NR			19.1
	ABRO 100 mg	≥18 years	NR		NR			36.4
	ABRO 200 mg		NR		NR			56.4
	РВО		NR		NR			12.5
	ABRO 100 mg	<18 years	NR		NR			20
14.05.440410.3	ABRO 200 mg		NR		NR			84.6
JADE MONO-2	РВО		NR		NR			11.1
	ABRO 100 mg	≥18 years	NR		NR			47.6
	ABRO 200 mg		NR		NR			52.9
			Upad	acitinib				
				Week 16				
	РВО		241	NR	NR	233	26	11.2
	UPA 15 mg	Adults	239	NR	NR	234	125	53.4
MEASURE UP 1	UPA 30 mg		243	NR	NR	238	145	60.9
	РВО		40	NR	NR	39	6	15.4
	UPA 15 mg	Adolescents	42	NR	NR	40	18	45
	UPA 30 mg		42	NR	NR	42	23	54.8
AAEAGUBE US S	РВО	A 1 1	242	NR	NR	238	24	10.1
MEASURE UP 2	UPA 15 mg	Adults	243	NR	NR	240	103	42.9

			ltab a	" DD NDC Change from Boo	ماناه	PP-NRS	S ≥4-point	Change
Study Name	Arms	Category	itch o	r PP-NRS Change from Bas	eiine	N	≥4-poin	t Change
			N	Change from baseline	SD	IN	24-point n 150 1 10 17 39 134 168 5 36	%
	UPA 30 mg		247	NR	NR	246	24-point (n 6 150 6 1 0 10 1 17 6 39 2 134 8 168 8 5 6 36	61
	РВО		36	NR	NR	36	N n 246 150 36 1 30 10 34 17 256 39 252 134 258 168 38 5	2.8
	UPA 15 mg	Adolescents	33	NR	NR	30	10	33.3
	UPA 30 mg		35	NR	NR	Iline N ≥4-poi n n NR 246 150 NR 36 1 NR 30 10 NR 34 17 NR 256 39 NR 252 134 NR 258 168 NR 38 5 NR 15 36	17	50
	PBO + TCS		264	NR	NR	256	n 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.2
	UPA 15 mg + TCS	Adults	261	NR	NR	252	N ≥4-point 0 n 246 150 36 1 30 10 34 17 256 39 252 134 258 168 38 5 15 36	53.2
AD-UP	UPA 30 mg + TCS		260	NR	NR	258	168	65.1
AD-OP	PBO + TCS		40	NR	rom baseline SD NR NR 24 NR NR 3 NR NR 3 NR NR 3 NR NR 25 NR NR 25 NR NR 3 NR NR 3	38	5	13.2
	UPA 15 mg + TCS	Adolescents	39	NR	NR	15	Page 150	41.7
	UPA 30 mg + TCS		37	NR	NR	33	18	54.5

Data on PP-NRS change from baseline and ≥4-point change stratified by age were not available in JADE TEEN, JADE COMPARE, JADE EXTEND, Phase IIb Gooderham 2019, BREEZE-AD1, BREEZE-AD2, BREEZE-AD3, BREEZE-AD5, BREEZE-AD6, BREEZE-AD7, Phase II Guttman-Yassky 2018, ECZTRA 1, ECZTRA 2, ECZTRA 3, ECZTEND, Heads Up, Phase IIb Guttman-Yassky 2020, LIBERTY AD SOLO 1 and SOLO 2, LIBERTY AD CHRONOS, LIBERTY AD SOLO-CONTINUE, and Phase IIb Thaci 2016. No data on PP-NRS≥3 or p-values were reported. ABRO: abrocitinib, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, SD: standard deviation, %: percent.

Table G1.32. Outcomes by subgroup: PP-NRS Change from Baseline Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,65}

Table G1.33. Outcomes by subgroup: PP-NRS ≥2-Point Change Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{44,65}

Table G1.34. Outcomes by subgroup: PP-NRS ≥3-Point Change Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)⁴⁴

Table G1.35. Outcomes by subgroup: PP-NRS ≥4-Point Change Stratified by Disease Severity (All available data were submitted manufacturer(s) as academic-in-confidence) ^{39,44,65}	by the
Olastituta for Clinical and Economic Pavious 2021	Daga 254

Table G1.36. Outcomes by subgroup: SCORAD, DLQI and CDLQI Stratified by Age (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,58,59}

Table G1.37. Outcomes by subgroup: SCORAD Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,65}

Table G1.38. Outcomes by subgroup: DLQI and CDLQI Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,65}

Table G1.39. Outcomes by subgroup: POEM Stratified by Age (All available data were submitted by the manufacturer(s) as academic-in-confidence)³⁹

Table G1.40. Outcomes by subgroup: POEM Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)^{39,44,65}

Table G1.41. Outcomes by subgroup: HADS Anxiety, HADS Depression and EQ-5D Stratified by Disease Severity (All available data were submitted by the manufacturer(s) as academic-in-confidence)⁴⁴

Table G1.42. Short-Term Safety $I^{35-37,39,41-46,48,50-56,58-60,63-67,69,70,77,83}$

Study Name	Arms	N	Timepoint	Any	/ AE	TE	AE	Dr Rela	idy ug- ated Es		due to AE	Serio	us AE		ious AE
				n	%	n	%	n	%	n	%	n	%	n	%
				Abr	ocitinib										
JADE	PBO	77		44	57	NR	NR	0*	0	7	9	3	4	NR	NR
MONO-1	ABRO 100 mg	156	12 weeks	108	69	NR	NR	1*	1	9	6	5	3	NR	NR
	ABRO 200 mg	154		120	78	NR	NR	1*	1	9	6	5	3	NR	NR
IADE	PBO	78		NR	NR	42	53.8	NR	NR	10	12.8	1	1.3	2	2.6
JADE MONO-2	ABRO 100 mg	158	12 weeks	NR	NR	99	62.7	NR	NR	6	3.8	5	3.2	2	1.3
10100 2	ABRO 200 mg	155		NR	NR	102	65.8	NR	NR	5	3.2	2	1.3	0	0
	PBO	96		NR	NR	50	52.1	NR	NR	2	2.1	2	2.1		
JADE TEEN	ABRO 100 mg	95	12 weeks	NR	NR	54	56.8	NR	NR	1	1.1	0	0		
	ABRO 200 mg	94		NR	NR	59	62.8	NR	NR	2	2.1	1	1.1		
	PBO	131		70	53.4	NR	NR	NR	NR	5	3.8	5	3.8	NR	NR
JADE	ABRO 100 mg	238	16	121	50.8	NR	NR	NR	NR	6	2.5	6	2.5	NR	NR
COMPARE	ABRO 200 mg	226	16 weeks	140	61.9	NR	NR	NR	NR	10	4.4	2	0.9	NR	NR
	DUP 300 mg	242		121	50	NR	NR	NR	NR	8	3.3	2	0.8	NR	NR
Phase II	PBO	56		NR	NR							NR	NR		
Gooderham	ABRO 100 mg	56	16 weeks	NR	NR	184	68.9	64	24	44	16.5	NR	NR	9	3.4
2019	ABRO 200 mg	55		NR	NR							NR	NR		
				Bar	icitinib										
	PBO	249		NR	NR	135	54.2	NR	NR	4	1.6	6	2.4	7 [†]	2.8
BREEZE-	BARI 1 mg	127	16 weeks	NR	NR	69	54.3	NR	NR	2	1.6	1	0.8	5 [†]	3.9
AD1	BARI 2 mg	123	10 MEEKS	NR	NR	71	57.7	NR	NR	1	0.8	0	0	3 [†]	2.4
	BARI 4 mg	125		NR	NR	73	58.4	NR	NR	1	0.8	2	1.6	2 [†]	1.6
	PBO	244	16 weeks	NR	NR	137	56.1	NR	NR	2	0.8	9	3.7	9 [†]	3.7

Study Name	Arms	N	Timepoint	Any	/ AE	TE	AE	Dr Rela	idy ug- ated Es		due to	Serio	us AE		ious :AE
				n	%	n	%	n	%	n	%	n	%	n	%
225	BARI 1 mg	125		NR	NR	66	53.2	NR	NR	7	5.6	9	7.3	6 [†]	4.8
BREEZE- AD2	BARI 2 mg	123		NR	NR	71	57.7	NR	NR	3	2.4	3	2.4	5 [†]	4.1
,,,,,	BARI 4 mg	123		NR	NR	66	53.7	NR	NR	2	1.6	1	0.8	3 [†]	2.4
225	РВО	146		NR	NR	72	49	NR	NR	4	2.7	3	2.1	6 [†]	4
BREEZE- AD5	BARI 1 mg	147	16 weeks	NR	NR	79	54	NR	NR	4	2.7	1	0.7	0 [†]	0
7103	BARI 2 mg	145		NR	NR	74	51	NR	NR	4	2.8	2	1.4	1 [†]	0.7
225	PBO + TCS	108		NR	NR	41	38	NR	NR	1	0.9	4	3.7	3 [†]	2.8
BREEZE- AD7	BARI 2 mg + TCS	109	16 weeks	NR	NR	61	56	NR	NR	0	0	2	1.8	6 [†]	5.5
7.07	BARI 4 mg + TCS	111		NR	NR	64	57.7	NR	NR	5	4.5	4	3.6	6 [†]	5.4
Phase II	PBO + TCS	49		NR	NR	24	49	NR	NR	5 [‡]	10.2	NR	NR	0	0
Guttman- Yassky	BARI 2 mg + TCS	37	16 weeks	NR	NR	17	45.9	NR	NR	1 [‡]	2.7	NR	NR	0	0
2018	BARI 4 mg + TCS	38		NR	NR	27	71.1	NR	NR	5 [‡]	13.2	NR	NR	1	2.6
		•	1	Tralo	kinumab)		•		•		•			•
	РВО	196		151	77			NR	NR	8	4.1	8	4.1		
ECZTRA 1	TRA 300 mg	602	16 weeks	460	76.4			NR	NR	20	3.3	23	3.8		
	РВО	200		132	66			NR	NR	3	1.5	5	2.5		
ECZTRA 2	TRA 300 mg	592	16 weeks	364	61.5			NR	NR	9	1.5	10	1.7		
ECZTRA 2	Placebo	91		57	62.6	26	28.6	NR	NR	0	0	0	0	NR	NR
Subgroup [¶]	TRA 300 mg	270	16 weeks	151	55.9	52	19.3	NR	NR	4	1.5	4	1.5	NR	NR
	PBO + TCS	126		84	66.7			NR	NR	1	0.8	4	3.2		
ECZTRA 3	TRA 300 mg + TCS	252	16 weeks	180	71.4			NR	NR	6	2.4	2	0.8		
	•	1	I	Upa	dacitinib				1	1		1	1		
MEASURE	РВО	281	46	NR	NR	166	59.1	NR	NR	12	4.3	8	2.8	NR	NR
UP 1	UPA 15 mg	281	16 weeks	NR	NR	176	62.6	NR	NR	4	1.4	6	2.1	NR	NR

Study Name	Arms	N	Timepoint	Any	/ AE	TE	AE	Dr Rela	udy ug- ated Es		due to AE	Serio	us AE		ious AE
				n	%	n	%	n	%	n	%	n	%	n	%
	UPA 30 mg	285		NR	NR	209	73.3	NR	NR	11	3.9	8	2.8	NR	NR
	РВО	278		NR	NR	146	52.5	NR	NR	12	4.3	8	2.9	NR	NR
MEASURE UP 2	UPA 15 mg	276	16 weeks	NR	NR	166	60.1	NR	NR	11	4	5	1.8	NR	NR
01 2	UPA 30 mg	282		NR	NR	173	61.3	NR	NR	7	2.5	7	2.5	NR	NR
	PBO + TCS	304		NR	NR	190	62.7	NR	NR	7	2.3	9	3	NR	NR
AD-UP	UPA 15 mg + TCS	300	16 weeks	NR	NR	200	66.7	NR	NR	4	1.3	7	2.3	NR	NR
	UPA 30 mg + TCS	297		NR	NR	215	72.4	NR	NR	4	1.3	4	1.3	NR	NR
	DUP 300 mg	344	46	216	62.8	NR	NR	122	35.3	4	1.2	4	1.2	NR	NR
Heads Up	UPA 30 mg	348	16 weeks	249	71.6	NR	NR	153	44	7	2	10	2.9	NR	NR
Phase IIb	РВО	40		25	63	NR	NR	NR	NR	3	7.5	1	2.5	NR	NR
Guttman-	UPA 7.5 mg	42	16	31	74	NR	NR	NR	NR	4	9.5	2	4.8	NR	NR
Yassky	UPA 15 mg	42	16 weeks	32	76	NR	NR	NR	NR	2	4.8	1	2.4	NR	NR
2020	UPA 30 mg	42		33	33	NR	NR	NR	NR	4	9.5	0	0	NR	NR
				Dup	ilumab					•				•	
	РВО	224		145	65	NR	NR	NR	NR	2	1	11	5	NR	NR
SOLO 1	DUP 300 mg Q2W	224	16 weeks	167	73	NR	NR	NR	NR	4	2	7	3	NR	NR
	DUP 300 mg QW	223		150	69	NR	NR	NR	NR	4	2	2	1	NR	NR
	РВО	236		168	72	NR	NR	NR	NR	5	2	13	6	NR	NR
SOLO 2	DUP 300 mg Q2W	233	16 weeks	154	65	NR	NR	NR	NR	2	1	4	2	NR	NR
	DUP 300 mg QW	239		157	66	NR	NR	NR	NR	3	1	8	3	NR	NR
	PBO QW	61		NR	NR	49	80	49	80	3 [‡]	5	NR	NR	4	7
Phase IIb	DUP 200 mg Q2W	61	1.6	NR	NR	46	75	46	75	3 [‡]	5	NR	NR	1	2
Thaci 2016	DUP 300 mg Q2W	64	16 weeks	NR	NR	50	78	50	78	4 [‡]	6	NR	NR	2	3
	DUP 300 mg Q4W	65		NR	NR	56	86	56	86	3 [‡]	5	NR	NR	3	5

None of these short-term safety outcomes were available in LIBERTY AD CHRONOS. ABRO: abrocitinib, AE: adverse event, BARI: baricitinib, D/C: discontinuation, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, TCS: topical corticosteroids, TEAE: treatment-emergent adverse event, TRA: tralokinumab, UPA: upadacitinib, %: percent. *treatment-related serious AE, †severe TEAE, †discontinuation due to TEAE, ¶North American subgroup.

Table G1.43. Short-Term Safety II^{35-37,41-43,45,46,48,51,56,63,64,66,67,69,83,84}

Study Name	Arms	N	Timepoint	Fatal	TEAE		ause tality	Cardio	Adverse vascular ent		nous embolism
				n	%	n	%	n	%	n	%
			Abrociti	nib							
	PBO	77		NR	NR	0	0	0	0	0	0
JADE MONO-1	ABRO 100 mg	156	12 weeks	NR	NR	0	0	0	0	0	0
	ABRO 200 mg	154		NR	NR	0	0	0	0	0	0
	PBO	78		NR	NR	0	0	0	0	0	0
JADE MONO-2	ABRO 100 mg	158	12 weeks	NR	NR	1	0.6	0	0	0	0
	ABRO 200 mg	155		NR	NR	0	0	0	0	0	0
	PBO	96		NR	NR	0	0	NR	NR	NR	NR
JADE TEEN	ABRO 100 mg	95	12 weeks	NR	NR	0	0	NR	NR	NR	NR
	ABRO 200 mg	94		NR	NR	0	0	NR	NR	NR	NR
	РВО	131		NR	NR	0	0	NR	NR	NR	NR
JADE COMPARE	ABRO 100 mg	238	16 weeks	NR	NR	0	0	NR	NR	NR	NR
	ABRO 200 mg	226		NR	NR	0	0	NR	NR	NR	NR
	DUP 300 mg	242		NR	NR	0	0	NR	NR	NR	NR
	PBO	56		0	0	0	0	NR	NR	0*	0
Phase II Gooderham 2019	ABRO 100 mg	56	16 weeks	0	0	0	0	NR	NR	0*	0
	ABRO 200 mg	55		0	0	0	0	NR	NR	1*	1.8
			Baricitir	nib							
BREEZE-AD1	PBO	249	16 weeks	0	0	0	0	0	0	0	0

JAK Inhibitors and Monoclonal Antibodies for the Treatment of Atopic Dermatitis – Evidence Report

Study Name	Arms	N	Timepoint	Fatal	TEAE		ause tality	Cardio	Adverse vascular ent		nous embolism
				n	%	n	%	n	%	n	%
	BARI 1 mg	127		0	0	0	0	0	0	0	0
	BARI 2 mg	123		0	0	0	0	0	0	0	0
	BARI 4 mg	125		0	0	0	0	0	0	0	0
	PBO	244		0	0	0	0	0	0	0	0
BREEZE-AD2	BARI 1 mg	125	16 weeks	0	0	0	0	0	0	0	0
DREEZE-AUZ	BARI 2 mg	123	10 weeks	0	0	0	0	0	0	0	0
	BARI 4 mg	123		0	0	0	0	0	0	0	0
	PBO	146		NR	NR	0	0	0	0	0	0
BREEZE-AD5	BARI 1 mg	147	16 weeks	NR	NR	0	0	0	0	0	0
	BARI 2 mg	145		NR	NR	0	0	0	0	0	0
	PBO + TCS	108		0	0	0	0	0	0	0	O [†]
BREEZE-AD7	BARI 2 mg + TCS	109	16 weeks	0	0	0	0	0	0	0	O [†]
	BARI 4 mg + TCS	111		0	0	0	0	0	0	1	1 [†]
	PBO + TCS	49		0	0	NR	NR	NR	NR	NR	NR
Phase II Guttman- Yassky 2018	BARI 2 mg + TCS	37	16 weeks	0	0	NR	NR	NR	NR	NR	NR
1833Ny 2016	BARI 4 mg + TCS	38		0	0	NR	NR	NR	NR	NR	NR
		•	Upadacit	inib	•		•		•	•	
	РВО	281		NR	NR	0	0	0	0		
MEASURE UP 1	UPA 15 mg	281	16 weeks	NR	NR	0	0	0	0		
	UPA 30 mg	285		NR	NR	0	0	0	0		
	РВО	278		NR	NR	0	0	0	0		
MEASURE UP 2	UPA 15 mg	276	16 weeks	NR	NR	0	0	0	0		
	UPA 30 mg	282		NR	NR	0	0	0	0		
45.115	PBO + TCS	304	1.5	NR	NR	0	0	0	0	0	0
AD-UP	UPA 15 mg + TCS	300	16 weeks	NR	NR	0	0	0	0	0	0

Study Name	Arms	N	Timepoint	Fatal	TEAE		ause tality	Cardio	Adverse vascular ent	_	nous embolism
				n	%	n	%	n	%	n	%
	UPA 30 mg + TCS	297		NR	NR	0	0	0	0	0	0
Hoods Ho	DUP 300 mg	344	16 wooks	0	0	0	0	0	0	0	0
Heads Up	UPA 30 mg	348	16 weeks	1	0.3	1	0.3	0	0	0	0
	PBO	40		NR	NR	0	0	0	0	0	0
Phase IIb	UPA 7.5 mg	42	16	NR	NR	0	0	0	0	0	0
Phase IIb Guttman-Yassky 2020	UPA 15 mg	42	16 weeks	NR	NR	0	0	0	0	0	0
	UPA 30 mg	42		NR	NR	0	0	0	0	0	0
			Dupilum	nab							
	РВО	224		NR	NR	0	0	NR	NR	NR	NR
SOLO 1	DUP 300 mg Q2W	224	16 weeks	NR	NR	0	0	NR	NR	NR	NR
	DUP 300 mg QW	223		NR	NR	0	0	NR	NR	NR	NR
	РВО	236		NR	NR	0	0	NR	NR	NR	NR
SOLO 2	DUP 300 mg Q2W	233	16 weeks	NR	NR	1	<1	NR	NR	NR	NR
	DUP 300 mg QW	239		NR	NR	1	<1	NR	NR	NR	NR

None of these short-term safety outcomes were available in ECZTRA 1, ECZTRA 2, ECZTRA 3, LIBERTY AD CHRONOS, and Phase IIb Thaci 2016. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, TCS: topical corticosteroids, TEAE: treatment-emergent adverse event, UPA: upadacitinib, %: percent. *pulmonary embolism, †deep vein thrombosis and pulmonary embolism.

Table G1.44. Short-Term Safety III $^{35-37,41-43,45,46,48,51,53,56,63-66,69,70,79,83,84}$

Study Name	Arms	N	Timepoint	•	ction RXN	_	kin Ction	Herp Infec			ious ction	Malig	nancy	Melar	on- nocytic Cancer	Conjur	nctivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
							Abroci	tinib									
IADE	РВО	77		NR	NR	0	0	2*	2.6	NR	NR	0	0	NR	NR	0	0
JADE MONO-1	ABRO 100 mg	156	12 weeks	NR	NR	2	1	2*	1.3	NR	NR	0	0	NR	NR	1	1
	ABRO 200 mg	154		NR	NR	1	1	0*	0	NR	NR	0	0	NR	NR	1	1
MDE	РВО	78		NR	NR	NR	NR	1*	1.3	1	1.3	0	0	NR	NR	0	0
JADE MONO-2	ABRO 100 mg	158	12 weeks	NR	NR	NR	NR	7*	4.4	3	1.9	0	0	NR	NR	4	3
	ABRO 200 mg	155		NR	NR	NR	NR	4*	2.6	0	0	0	0	NR	NR	4	3
	РВО	96		NR	NR	NR	NR	0	0	NR	NR	NR	NR	NR	NR	NR	NR
JADE TEEN	ABRO 100 mg	95	12 weeks	NR	NR	NR	NR	1	1.1	NR	NR	NR	NR	NR	NR	NR	NR
	ABRO 200 mg	94		NR	NR	NR	NR	2	2.1	NR	NR	NR	NR	NR	NR	NR	NR
	РВО	131		0 [†]	0	1	0.8	O [‡]	0	NR	NR	NR	NR	NR	NR	3	2.3
JADE	ABRO 100 mg	238		2 [†]	0.01	1	0.4	2 [‡]	0.8	NR	NR	NR	NR	NR	NR	2	0.8
COMPARE	ABRO 200 mg	226	16 weeks	2 [†]	0.01	1	0.4	4 [‡]	1.8	NR	NR	NR	NR	NR	NR	3	1.3
	DUP 300 mg	242		3 [†]	0.01	NR	NR	O [‡]	0	NR	NR	NR	NR	NR	NR	15	6.2
Phase II	РВО	56		NR	NR	NR	NR	2 [¶]	3.6	NR	NR	0 [¥]	0	NR	NR	NR	NR
Gooderham 2019	ABRO 100 mg	56	16 weeks	NR	NR	NR	NR	2 [¶]	3.6	NR	NR	0 [¥]	0	NR	NR	NR	NR
2019	ABRO 200 mg	55		NR	NR	NR	NR	O¶	0	NR	NR	O [¥]	0	NR	NR	NR	NR
							Baricit	inib									
	РВО	249		NA	NA	11§	4.4	3**	1.2	NR	NR	NR ^{††}	NR ^{††}	NR	NR	4 ^{‡‡}	1.6
	BARI 1 mg	127	46	NA	NA	1 §	0.8	7	5.5	NR	NR	0	0	NR	NR	1 ^{‡‡}	0.8
BREEZE-AD1	BARI 2 mg	123	16 weeks	NA	NA	6§	4.9	4	3.3	NR	NR	0	0	NR	NR	2 ^{‡‡}	1.6
	BARI 4 mg	125		NA	NA	4 [§]	3.2	9	7.2	NR	NR	0	0	NR	NR	1 ^{‡‡}	0.8
BREEZE-AD2	РВО	244	16 weeks	NA	NA	19	7.8	11	4.5	NR	NR	NR ^{††}	NR ^{††}	NR	NR	2	0.8

Study Name	Arms	N	Timepoint	Injed Site	ction RXN	_	kin ction	Herp Infec			ious ction	Malig	nancy	Melar	on- nocytic Cancer	Conjur	nctivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
	BARI 1 mg	125		NA	NA	6	4.8	6	4.8	NR	NR	0	0	NR	NR	6	4.8
	BARI 2 mg	123		NA	NA	9	7.3	7	5.7	NR	NR	0	0	NR	NR	2	1.6
	BARI 4 mg	123		NA	NA	6	4.9	5	4.1	NR	NR	0	0	NR	NR	0	0
	РВО	146		NR	NR	7 ^{¶¶}	5	$1^{\mathtt{YY}}$	0.6	1	0.7	0	0	NR	NR	NR	NR
BREEZE-AD5	BARI 1 mg	147	16 weeks	NR	NR	6 ^{¶¶}	4	4 ^{¥¥}	2.7	0	0	0	0	NR	NR	NR	NR
	BARI 2 mg	145		NR	NR	6 ^{¶¶}	4	2 ^{¥¥}	1.4	1	0.7	0	0	NR	NR	NR	NR
	PBO + TCS	108		NA	NA	NR	NR	4##	3.7	2	1.9	O ^{§§}	0	NR	NR	NR	NR
BREEZE-AD7	BARI 2 mg + TCS	109	16 weeks	NA	NA	NR	NR	7##	6.4	0	0	O ^{§§}	0	NR	NR	NR	NR
	BARI 4 mg + TCS	111		NA	NA	NR	NR	7##	6.3	0	0	O ^{§§}	0	NR	NR	NR	NR
	PBO + TCS	49		NA	NA	0	0	0**	0	NR	NR	NR	NR	NR	NR	1	2
Phase II Guttman-	BARI 2 mg + TCS	37	16 weeks	NA	NA	0	0	0**	0	NR	NR	NR	NR	NR	NR	O _{λλ}	0
Yassky 2018	BARI 4 mg + TCS	38		NA	NA	1	3	1**	3	NR	NR	NR	NR	NR	NR	O _{λλ}	0
						Т	ralokin	umab									
ECZTRA 1	РВО	196	16 weeks	NR	NR	3	1.5	2	1	NR	NR	0#	0	NR	NR	4 ^y	2
ECZIKA I	TRA 300 mg	602	16 weeks			6	1	3	0.5	NR	NR	0#	0	NR	NR	43 ^y	7.1
FCZTDA 2	РВО	200	16	NR	NR	11	5.5	5	2.5	NR	NR	0#	0	NR	NR	3 ^ү	1.5
ECZTRA 2	TRA 300 mg	592	16 weeks			12	2	2	0.3	NR	NR	1#	0.2	NR	NR	18 ^γ	3
ECZTRA 2	Placebo	91	1C was also	NR	NR	8§	8.8	NR	NR	NR	NR	NR	NR	NR	NR	3	2.2
Subgroup ^{¶¶¶}	TRA 300 mg	270	16 weeks	NR	NR	5 [§]	1.9	1###	0.4	NR	NR	NR	NR	NR	NR	6	2.2
	PBO + TCS	126		0	0	7 [§]	5.6	1	0.8	NR	NR	0#	0	NR	NR	4	3.2
ECZTRA 3	TRA 300 mg + TCS	252	16 weeks	17	6.7	4 [§]	1.6	1	0.4	NR	NR	0#	0	NR	NR	28	11.1
						ι	Jpadac	itinib									

Study Name	Arms	N	Timepoint	Injed Site			kin ction	Herp Infec			ious ction	Malig	nancy	Melar	on- nocytic Cancer	Conjur	nctivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
	РВО	281		NR	NR	NR	NR			0	0	0	0	0	0	NR	NR
MEASURE UP 1	UPA 15 mg	281	16 weeks	NR	NR	NR	NR			2	1	0	0	1	1	NR	NR
01 1	UPA 30 mg	285		NR	NR	NR	NR			3	1	2	1	0	0	NR	NR
	РВО	278		NR	NR	NR	NR			2	1	0	0	0	0	NR	NR
MEASURE UP 2	UPA 15 mg	276	16 weeks	NR	NR	NR	NR			1	1	0	0	2	1	NR	NR
OF Z	UPA 30 mg	282		NR	NR	NR	NR			2	1	1	1	0	0	NR	NR
	PBO + TCS	304		NR	NR	NR	NR			3	1					NR	NR
AD-UP	UPA 15 mg + TCS	300	16 weeks	NR	NR	NR	NR			3	1					NR	NR
	UPA 30 mg + TCS	297		NR	NR	NR	NR			0	0					NR	NR
Hoods He	DUP 300 mg	344	16 weeks	NR	NR	NR	NR	3 [‡]	0.9	2	0.6	0	0	1	0.3	29	8.4
Heads Up	UPA 30 mg	348	16 weeks	NR	NR	NR	NR	7 [‡]	2	4	1.1	0	0	0	0	5	1.4
	РВО	40		NR	NR	0	0	O [‡]	0	0	0	0	0	NR	NR	NR	NR
Phase IIb	UPA 7.5 mg	42	16 weeks	NR	NR	1	2.4	O [‡]	0	2	4.8	0	0	NR	NR	NR	NR
Guttman- Yassky 2020	UPA 15 mg	42	16 weeks	NR	NR	0	0	O [‡]	0	1	2.4	0	0	NR	NR	NR	NR
,	UPA 30 mg	42		NR	NR	0	0	O [‡]	0	0	0	0	0	NR	NR	NR	NR
							Dupilu	mab									
	РВО	224		13	6	18	8	9***	4	NR	NR	NR	NR	NR	NR	2	0.9
SOLO 1	DUP 300 mg Q2W	224	16 weeks	19	8	13	6	15***	7	NR	NR	NR	NR	NR	NR	11	4.8
	DUP 300 mg QW	223		41	19	14	6	9***	4	NR	NR	NR	NR	NR	NR	7	3.2
	РВО	236		15	6	26	11	8	3	NR	NR	NR	NR	NR	NR	1	0.4
SOLO 2	DUP 300 mg Q2W	233	16 weeks	32	14	13	6	10	4	NR	NR	NR	NR	NR	NR	9	3.8
	DUP 300 mg QW	239		31	13	15	6	12	5	NR	NR	NR	NR	NR	NR	9	3.8

Study Name	Arms		Timepoint	-	ction RXN	_	in ction	Herp Infec			ious ction	Malig	nancy		on- locytic Cancer	Conjur	ıctivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
	PBO QW	61		2	3	NR	NR	1***	2	NR	NR	NR	NR	NR	NR	2***	3
Phase IIb	DUP 200 mg Q2W	61		4	7	NR	NR	6***	10	NR	NR	NR	NR	NR	NR	6***	10
Thaci 2016	DUP 300 mg Q2W	64	16 weeks	3	5	NR	NR	5***	8	NR	NR	NR	NR	NR	NR	3***	5
	DUP 300 mg Q4W	65		5	8	NR	NR	4***	6	NR	NR	NR	NR	NR	NR	4***	6

None of these short-term safety outcomes were available in LIBERTY AD CHRONOS. ABRO: abrocitinib, BARI: baricitinib, DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NA: not applicable, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, RXN: reaction, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *herpes simplex, herpes zoster, oral herpes, and eczema herpeticum, [†]injection site erythema, oedema, pain, swelling, [‡]herpes zoster, [¶]herpes simplex, herpes zoster, and eczema herpecitum, [‡]malignant melanoma, [#]malignancies diagnosed after randomization, [§]skin infection requiring systemic treatment, ^{*}conjunctivitis, conjunctivitis bacterial, conjunctivitis viral and conjunctivitis allergic, **herpes simplex, ^{††}2 malignancies were reported in patients on placebo, but publication doesn't distinguish which trial's patients experienced these (either BREEZE-AD1 or BREEZE-AD2), ^{‡‡}conjunctivitis/keratitis, ^{¶¶}skin infection requiring antibiotics, ^{¥‡}herpes zoster and herpes simplex, ^{##}oral herpes virus infection, herpes simplex virus infection, herpes virus infection include oral herpes, herpes simplex, eczema herpeticum, herpes virus infection, herpes zoster, ophthalmic herpes simplex, genital herpes, herpes ophthalmic, herpes simplex otitis externa, ^{†††}herpes viral infections include oral herpes, herpes simplex, eczema herpeticum, herpes virus infection, and herpes zoster, ^{‡‡}conjunctival infections, irritations, and inflammation, ^{¶¶}North American subgroup.

Table G1.45. Long-Term Safety $I^{50,53,54,60-64,67,76,78,83,107}$

Study Name	Arms	N	Timepoint	Any	, AE	TE	AE	Study Relate		D/C d	ue to AE	Serio	us AE	Seriou	is TEAE
•			•	n	%	n	%	n	%	n	%	n	%	n	%
						Abroc	itinib								
JADE EXTEND	ABRO 100 mg	595	40	NR	NR	NR	NR	NR	NR	37	6.2	NR	NR	NR	NR
Subgroup 1 [‡]	ABRO 200 mg	521	48 weeks	NR	NR	NR	NR	NR	NR	45	8.6	NR	NR	NR	NR
JADE EXTEND	ABRO 100 mg	130	00 1	NR	NR	54	41.5	NR	NR	1 [¥]	0.8	NR	NR	3	2.3
Subgroup 2 [¶]	ABRO 200 mg	73	32 weeks	NR	NR	37	50.7	NR	NR	1 [¥]	1.4	NR	NR	1	1.4
					ı	Tralokiı	numab	I.	I	ı	l .		ı	ı	
	PBO	35		25	71.4	NR	NR	NR	NR	0	0	0	0	NR	NR
ECZTRA 1	TRA 300 mg Q2W	68	36 weeks	54	79.4	NR	NR	NR	NR	1	1.5	1	1.5	NR	NR
	TRA 300 mg Q4W	76		53	69.7	NR	NR	NR	NR	1	1.3	3	3.9	NR	NR
	PBO	46		32	69.6	NR	NR	NR	NR	0	0	0	0	NR	NR
ECZTRA 2	TRA 300 mg Q2W	91	36 weeks	62	68.1	NR	NR	NR	NR	2	2.2	0	0	NR	NR
	TRA 300 mg Q4W	89		56	62.9	NR	NR	NR	NR	1	1.1	3	3.4	NR	NR
	TRA 300 mg Q2W + TCS (PBO nonresponders)	79		55	69.6	NR	NR	NR	NR	2	2.5	0	0	NR	NR
	PBO Q2W + TCS (PBO responders)	41		26	63.4	NR	NR	NR	NR	1	2.4	1	2.4	NR	NR
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	69	16-32 weeks	48	69.6	NR	NR	NR	NR	0	0	3	4.3	NR	NR
	TRA 300 mg Q4W + TCS (TRA responders)	69	Weeks	41	59.4	NR	NR	NR	NR	1	1.4	0	0	NR	NR
	TRA 300 mg Q2W + TCS (TRA nonresponders)	95		62	65.3	NR	NR	NR	NR	1	1.1	2	2.1	NR	NR

Study Name	Arms	N	Timepoint	Any	/ AE	TE	AE	Study Relate		D/C d	ue to AE	Serio	us AE	Seriou	s TEAE
•			•	n	%	n	%	n	%	n	%	n	%	n	%
ECZTEND	TRA 300 mg Q2W	1174	56 weeks	844	71.9	NR	NR	NR	NR	19	1.6	55	4.7	NR	NR
						Upada	citinib								
Heads Up	DUP 300 mg	344	24 weeks	230	66.9	NR	NR	129	37.5	4	1.2	7	2	NR	NR
пеаих ор	UPA 30 mg	348	24 weeks	270	77.6	NR	NR	170	48.9	11	3.2	14	4	NR	NR
	PBO → PBO	10		1	10.0	NR	NR	1*	10.0	0	0.0	0	0.0	NR	NR
	PBO→UPA 30 mg	10		7	70.0	NR	NR	5*	50.0	1	10.0	2	20.0	NR	NR
	UPA 7.5 mg→PBO	15		1	6.7	NR	NR	1*	6.7	0	0.0	0	0.0	NR	NR
Phase IIb	UPA 7.5 mg→UPA 7.5 mg	16	22	4	25.0	NR	NR	1*	6.3	0	0.0	0	0.0	NR	NR
Guttman- Yassky 2020	UPA 15 mg→PBO	19	32 weeks	5	26.3	NR	NR	3*	15.8	0	0.0	0	0.0	NR	NR
	UPA 15 mg→UPA 15 mg	18		5	27.8	NR	NR	3*	16.7	0	0.0	0	0.0	NR	NR
	UPA 30 mg→PBO	19		7	36.8	NR	NR	3*	15.8	0	0.0	0	0.0	NR	NR
	UPA 30 mg→UPA 30 mg	19		8	42.1	NR	NR	4*	21.1	1	5.3	0	0.0	NR	NR
						Dupilu	ımab								
	PBO + TCS	315		266	84	NR	NR	NR	NR	24	8	16	5	NR	NR
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	110	52 weeks	97	88	NR	NR	NR	NR	2	2	4	4	NR	NR
CIMONOS	DUP 300 mg + TCS QW	315		261	83	NR	NR	NR	NR	9	3	9	3	NR	NR
	РВО	82		NR	NR	67	81.7	1 [†]	1.2	3	3.7	NR	NR	NR	NR
AD SOLO-	DUP 300 mg Q8W	84	36 weeks	NR	NR	63	75	3 [†]	3.6	0	0	NR	NR	NR	NR
CONTINUE	DUP 300 mg Q4W	87		NR	NR	64	73.6	4 [†]	4.6	2	2.3	NR	NR	NR	NR

Study Name	Arms	N	Timepoint	Any AE		TEAE		Study Relate	_	D/C d	ue to AE	Serio	us AE	Seriou	s TEAE
				n	%	n	%	n	%	n	%	n	%	n	%
	DUP 300 mg QW/Q2W	167		NR	NR	118	70.7	6 [†]	3.6	0	0	NR	NR	NR	NR

None of these long-term safety data were available in BREEZE-AD3 and BREEZE-AD6. AE: adverse event, D/C: discontinuation, DUP: dupilumab, kg: kilogram, LTE: long-term extension, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, RXN: reaction, TEAE: treatment-emergent adverse event, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent.*AE possibly related to drug, [†]treatment-emergent SAE, [‡]JADE MONO-1 & 2 and JADE COMPARE subgroup, [¶]JADE COMPARE dupilumab nonresponder subgroup, [§]discontinuation due to TEAE.

Table G1.46. Long-Term Safety II 50,53,54,60,63,64,69,83,107

Study Name	Arms	N	Timepoint	All-ca Mort		Cardio	Adverse vascular ent		nous pembolism	Nau	usea
				n	%	n	%	n	%	n	%
			Abro	citinib							
JADE EXTEND	ABRO 100 mg	130	32 weeks	NR	NR	NR	NR	NR	NR	0	0
Subgroup 2*	ABRO 200 mg	73	32 Weeks	NR	NR	NR	NR	NR	NR	6	8.2
			Tralok	inumab	•						•
	TRA 300 mg Q2W + TCS (PBO nonresponders)	79		NR	NR	NR	NR	NR	NR	1	1.3
	PBO 300 mg Q2W + TCS (PBO responders)	41		NR	NR	NR	NR	NR	NR	0	0
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	69	16-32 weeks	NR	NR	NR	NR	NR	NR	3	4.3
	TRA 300 mg										
	Q4W + TCS (TRA responders)	69		NR	NR	NR	NR	NR	NR	4	5.8
	TRA 300 mg Q2W + TCS (TRA nonresponders)	95		NR	NR	NR	NR	NR	NR	3	3.2
			Upad	acitinib							
Hoods Ho	DUP 300 mg	344	24 weeks	0	0	0	0	0	0	NR	NR
Heads Up	UPA 30 mg	348	24 weeks	1	0.3	0	0	0	0	NR	NR
	PBO → PBO	10		NR	NR	0	0	0	0	NR	NR
	PBO→UPA 30 mg	10		NR	NR	0	0	0	0	NR	NR
	UPA 7.5 mg →PBO	15		NR	NR	0	0	0	0	NR	NR
Phase IIb Guttman-	UPA 7.5 mg → UPA 7.5 mg	16	22 alsa	NR	NR	0	0	0	0	NR	NR
Yassky 2020	UPA 15 mg→ PBO	19	32 weeks	NR	NR	0	0	0	0	NR	NR
. 233.1, 2020	UPA 15 mg→ UPA 15 mg	18		NR	NR	0	0	0	0	NR	NR
	UPA 30 mg→ PBO	19		NR	NR	0	0	0	0	NR	NR
	UPA 30 mg→ UPA 30 mg	19		NR	NR	0	0	0	0	NR	NR
			Dupi	lumab							

LIBERTYAR	PBO + TCS	315		0	0	NR	NR	NR	NR	NR	NR
LIBERTY AD CHRONOS	DUP 300 mg + TCS Q2W	110	56 weeks	0	0	NR	NR	NR	NR	NR	NR
CHRONOS	DUP 300 mg + TCS QW	315		1	<1	NR	NR	NR	NR	NR	NR
	PBO	82		0	0	NR	NR	NR	NR	NR	NR
AD SOLO-	DUP 300 mg Q8W	84	3C alsa	0	0	NR	NR	NR	NR	NR	NR
CONTINUE	DUP 300 mg Q4W	87	36 weeks	1	1.1	NR	NR	NR	NR	NR	NR
	DUP 300 mg QW/Q2W	167		0	0	NR	NR	NR	NR	NR	NR

None of these long-term safety data were available in BREEZE-AD3, BREEZE-AD6, ECZTRA 1, ECZTRA 2, and ECZTEND. There were no long-term data on Fatal TEAE's available. DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, TCS: topical corticosteroids, TEAE: treatment-emergent adverse event, TRA: tralokinumab, UPA: upadacitinib, %: percent. *JADE COMPARE dupilumab nonresponder subgroup.

Table G1.47. Long-Term Safety ${\rm III}^{50,53-55,60-64,67,78,83}$

Study Arms		N	Timepoint	Injec Site I		Skin Infec	tion	Herpe Infect		Serio Infe	ous ction	Malig	nancy	Non- Melar Skin C	nocytic ancer	Conjund	ctivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
						Tralol	kinuma	b					_				•
	PBO	35		1	2.9	0*	0	0 [†]	0	NR	NR	0 [‡]	0	NR	NR	2 [¶]	5.7
ECZTRA 1	TRA 300 mg Q2W	68	36 weeks	5	7.4	2*	2.9	0 [†]	0	NR	NR	0 [‡]	0	NR	NR	6 [¶]	8.8
	TRA 300 mg Q4W	76		7	9.2	2*	2.6	0 [†]	0	NR	NR	0 [‡]	0	NR	NR	5 [¶]	6.6
	PBO	46		0	0	1*	2.2	0 [†]	0	NR	NR	0 [‡]	0	NR	NR	3 [¶]	6.5
ECZTRA 2	TRA 300 mg Q2W	91	36 weeks	4	4.4	2*	2.2	1 [†]	1.1	NR	NR	0 [‡]	0	NR	NR	8 [¶]	8.8
	TRA 300 mg Q4W	89		4	4.5	1*	1.1	0 [†]	0	NR	NR	1 [‡]	1.1	NR	NR	5¶	5.6
	TRA 300 mg Q2W + TCS (PBO non- responders)	79		2	2.5	2*	2.5	3 [¥]	4	NR	NR	O [‡]	0	NR	NR	6#	7.6
	PBO Q2W + TCS (PBO responders)	41		0	0	0*	0	1 [¥]	2	NR	NR	1‡	2.4	NR	NR	1#	2.4
ECZTRA 3	TRA 300 mg Q2W + TCS (TRA responders)	69	16-32 weeks	5	7.2	0*	0	3 [¥]	4	NR	NR	O [‡]	0	NR	NR	3#	4.3
	TRA 300 mg Q4W + TCS (TRA responders)	69	weeks	4	5.8	0*	0	4 [¥]	6	NR	NR	1 [‡]	1.4	NR	NR	1#	1.4
	TRA 300 mg Q2W + TCS (TRA non- responders)	95		5	5.3	1*	1.1	5 [¥]	5	NR	NR	O‡	0	NR	NR	4#	4.2
ECZTEND	TRA 300 mg Q2W	1174	Week 56	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	65 [¶]	5.9
	•	•	ı	•		Upad	acitini	b	•	•	•	•		•			•
Hoods He	DUP 300 mg	344	24 wools	NR	NR	NR	NR	4##	1.2	2	0.6	0	0	1	0.3	35	10.2
Heads Up	UPA 30 mg	348	24 weeks	NR	NR	NR	NR	12##	3.4	4	1.1	1	0.3	0	0	5	1.4
Dhasa Uh	PBO→PBO	10	22	NR	NR	NR	NR	NR	NR	0	0	0	0	0 [§]	0	NR	NR
Phase IIb	PBO→UPA 30 mg	10	32 weeks	NR	NR	NR	NR	NR	NR	1	10	1	10	1 [§]	10	NR	NR

Study Name	Arms	N	Timepoint	Injec		Skin Infec	tion	Herpe Infecti		Serio Infe	ous ction	Malig	nancy	Non- Melar Skin C	nocytic Cancer	Conjunc	tivitis
				n	%	n	%	n	%	n	%	n	%	n	%	n	%
Guttman-	UPA 7.5 mg→ PBO	15		NR	NR	NR	NR	NR	NR	0	0	0	0	0§	0	NR	NR
Yassky 2020	UPA 7.5 mg→ UPA 7.5 mg	16		NR	NR	NR	NR	NR	NR	0	0	0	0	O§	0	NR	NR
	UPA 15 mg→PBO	19		NR	NR	NR	NR	NR	NR	0	0	0	0	0 [§]	0	NR	NR
	UPA 15 mg→ UPA 15 mg	18		NR	NR	NR	NR	NR	NR	0	0	0	0	0 [§]	0	NR	NR
	UPA 30 mg→ PBO	19		NR	NR	NR	NR	NR	NR	0	0	0	0	0§	0	NR	NR
	UPA 30 mg→ UPA 30 mg	19		NR	NR	NR	NR	NR	NR	0	0	0	0	0 [§]	0	NR	NR
		•				Dup	ilumab		•		•	•	•				
	PBO + TCS	315		24	8	56 ^y	18	25**	8	NR	NR	NR	NR	NR	NR	25 ^{††}	8
LIBERTY AD	DUP 300 mg + TCS Q2W	110	52 weeks	16	15	12 ^y	11	8**	7	NR	NR	NR	NR	NR	NR	15 ^{††}	14
CHRONOS	DUP 300 mg + TCS QW	315		60	19	26 ^y	8	22**	7	NR	NR	NR	NR	NR	NR	61 ^{††}	19
	PBO	82		7	8.5	8 ^y	9.8	5 ^{‡‡}	6.1	NR	NR	0 ^{¶¶}	0	0	0	4 ^{¥¥}	4.9
	DUP 300 mg Q8W	84		6	7.1	5 ^y	6	10 ^{‡‡}	11.9	NR	NR	2 ^{¶¶}	2.4	2	2.4	3 ^{¥¥}	3.6
AD 5010	DUP 300 mg Q4W	87		6	6.9	1 ^y	1.1	3 ^{‡‡}	3.4	NR	NR	111	1.1	1	1.1	4 ^{¥¥}	4.6
AD SOLO- CONTINUE	DUP 300 mg QW/Q2W	167	36 weeks	18	10. 8	4 ^y	2.4	11‡‡	6.6	NR	NR	O ^{¶¶}	0	0	0	9 ^{¥¥}	5.4
	DUP 4 mg/kg (Children)	19		2##	10. 5	O _{AA}	0	1 ^{§§}	5.3	NR	NR	NR	NR	NR	NR	1***	5.3

None of these long-term safety data were available in JADE EXTEND, BREEZE-AD3, and BREEZE-AD6. DUP: dupilumab, kg: kilogram, mg: milligram, n: number, N: total number, NR: not reported, PBO: placebo, QW: once weekly, Q2W: every two weeks, Q4W: every four weeks, Q8W: every eight weeks, RXN: reaction, TCS: topical corticosteroids, TRA: tralokinumab, UPA: upadacitinib, %: percent. *skin infection requiring systemic treatment, †eczema herpeticum, †malignancies diagnosed after randomization, ¶conjunctivitis, conjunctivitis bacterial, conjunctivitis viral, and conjunctivitis allergic, ¥oral herpes and eczema herpeticum, #conjunctivitis, conjunctivitis viral, §non-melanoma skin cancer, ¶non-herpetic skin infection, **oral herpes, herpes simplex, herpes virus infection, herpes zoster, eczema herpeticum, genital herpes, herpes ophthalmic, ophthalmic herpes simplex, and ophthalmic herpes

zoster, ^{††}conjunctivitis allergic, conjunctivitis bacterial, atopic keratoconjunctivitis, and conjunctivitis, ^{‡‡}herpes simplex virus infection, oral herpes infection, ophthalmic herpes infection, ^{¶¶}basal cell carcinoma, ^{¥¥}conjunctivitis, conjunctivitis bacterial, conjunctivitis viral, conjunctivitis allergic, and atopic keratoconjunctivitis, ^{##}herpes zoster.

Mild to Moderate Population

Table G1.48 Study Quality^{92,95}

Trial	Comparable Groups	Non- differential Follow-up	Patient/ Investigator Blinding (Double- blind)	Clear Definition of Intervention	Clear Definition of Outcomes	Selective Outcome Reporting	Measurements Valid	Intention- to-treat Analysis	Approach to Missing Data	USPSTF Rating
				Ruxol	itinib Cream					
TRuE AD-1	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	NRI	Good
TRuE AD-2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	NRI	Good
				Cri	saborole					
AD301/302	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Unclear	Good
CrisADe CARE 1	NA	Yes	NA	Yes	Yes	No	Yes	NA	NA	Fair

Includes on published phase II RCTs. NA: not applicable, NRI: non-responder imputation,

Table G1.49. Key Features

Trial	Patient Population	Interventions	Inclusion Criteria	Key Outcomes
		Ruxolitinib C	ream	
Phase III TRuE-AD1 (poster) ^{85,88,89} Papp, K. 2020	N~600 DB, PC, RCT Adolescents aged 12-17 and adults aged 18+ with mild-to-moderate AD	Applied twice daily for 8 weeks: • ruxolitinib cream 1.5% • ruxolitinib cream 0.75% • vehicle (placebo) cream Prohibited concomitant therapy: UV light therapy, JAK inhibitors (systemic/topical), bleach baths (diluted sodium hypochlorite) more than 2x/week	 Adolescents aged 12 to 17 years, inclusive, and adults aged ≥ 18 years. Participants with AD for ≥ 2 years. Participants with an IGA score of 2 to 3 at screening and 0 to 4 at Week 8 Participants with % BSA (excluding scalp) of AD involvement of 3% to 20% at screening and 0% to 20% at Week 8 Participants who agree to discontinue all agents used to treat AD during trial Willingness to avoid pregnancy or fathering of children 	Primary Endpoint at week 8: •IGA-TS response rate Secondary Endpoints at week 8: •EASI-75 response rate •Itch NRS 4-point improvement response rate •PROMIS Short Form-Sleep Disturbance 6-point improvement response rate •SCORAD, mean change from baseline
Phase III TRUE-AD2 (Poster) ^{85,88,89} Papp, K. 2020	N~600 DB, PC, RCT Adolescents aged 12-17 and adults aged 18+ with mild-to-moderate AD	Applied twice daily for 8 weeks: • ruxolitinib cream 1.5% • ruxolitinib cream 0.75% • vehicle (placebo) cream Prohibited concomitant therapy: UV light therapy, JKA inhibitors (systemic/topical), bleach baths (diluted sodium hypochlorite) more than 2x/week	 Adolescents aged 12 to 17 years, inclusive, and adults aged ≥ 18 years. Participants with AD for ≥ 2 years. Participants with an IGA score of 2 to 3 at screening and 0 to 4 at Week 8 Participants with % BSA (excluding scalp) of AD involvement of 3% to 20% at screening and 0% to 20% at Week 8 Participants who agree to discontinue all agents used to treat AD during trial Willingness to avoid pregnancy or fathering of children 	Primary Endpoint at week 8: •IGA-TS response rate Secondary Endpoints at week 8: •EASI-75 response rate •Itch NRS 4-point improvement response rate •PROMIS Short Form-Sleep Disturbance 6-point improvement response rate •SCORAD, mean change from baseline

Trial	Patient Population	Interventions	Inclusion Criteria	Key Outcomes
Phase II ^{86,87}	N= 307	Vehicle BID (n=52) Triamcinolone 0.1% BID (n=51)	Patients aged 18–70 years with active atopic dermatitis	Primary endpoint: mean percentage change from
Kim 2020, Kim 2019	randomized, dose- ranging	RUX 0.15% QD (n= 51) RUX 0.5% QD (n=51) RUX 1.5% QD (n=52)	History of AD >2 yearsIGA of 2 or 3BSA involvement of 3%–20%	baseline EASI score at week 4
	Adults 18 to 70 with active atopic dermatitis	RUX 1.5 % BID (n=50) Prohibited concomitant therapy: systemic and topical treatments		Secondary Endpoints: responder rates (IGA and EASI), itch NRS score, and safety
		Crisaboro	ole	
Phase III ⁹⁵ AD 301	N=763 RCT, MC, DB, vehicle-controlled phase III	Crisaborole or Vehicle cream Prohibited concomitant therapy: biologic or systemic therapy or TCS or TCI	Patients to be aged 2 years or older and have a clinical diagnosis of AD according to Hanifin and Rajka34 criteria, 5% or more treatable body surface area involvement, and a baseline Investigator's	Primary Endpoint: success of ISGA score at 29 days Secondary endpoint: Proportion of patients with
	Patients 2 and older with mild to moderate AD	therapy of Tes of Tel	Static Global Assessment (ISGA) score of mild (2) or moderate (3) Patients were also allowed to use acceptable bland emollients to manage	an ISGA score of clear or almost clear at 29 days, time to success in ISGA score, pruritus severity,
Phase III ⁹⁵ AD 302	N= 764 RCT, MC, DB, vehicle-controlled phase III studies		dry skin areas around, but not overlapping, the treatable AD-involved areas.	signs of AD
	Patients 2 and older with mild to moderate AD			
Phase III AD 303 Long-term	Patients 2 and older with mild to moderate AD	Crisaborole	Patients eligible for AD-303 must have completed the pivotal study (AD-301, AD-	Safety
safety study ⁹⁰ Eichenfield 2017	MC, OL, LTE safety study	Prohibited concomitant therapy: TCS or TCI	302) without experiencing a crisaborole treatment-related AE or a serious AE (SAE) that precluded further	
Lichennela 2017	N= 517		treatment with crisaborole ointment; they could enroll in the extension study within 8 days of day 36 of the pivotal studies.	

Trial	Patient Population	Interventions	Inclusion Criteria	Key Outcomes
Post Hoc Analyses of AD 301/302 ^{91,93,94,96}	Same as AD 301/302	Same as AD 301/302	Same as AD 301/302	QoL
Phase IV CrisADe CARE 1 ⁹²	N= 137 MC, PK, OL, single arm	Crisaborole	aged 3 to < 24 months with a diagnosis of AD per Hanifin and Rajka criteria [10], mild (2) or moderate (3) AD per ISGA [6],	Primary Endpoint: the incidence of TEAEs
Schlessinger 2020	Infants aged 3 <24 months with mild-to- moderate AD		and a percentage of treatable body surface area (%BSA) ≥ 5, excluding the scalp.	Secondary Endpoints: ISGA success, ISGA clear or almost clear at day 29, percent change in EASI, POEM

AD: atopic dermatitis, AE: adverse event, BID: twice daily, BSA: body surface area, DB: double-blind, LTE: long-term extension, MC: multicenter, N: total number, OL: open-label, PC: placebo-controlled, PK: pharmacokinetic, QD: once daily, RCT: randomized controlled trial, QoL: quality of life, RUX: ruxolitinib, SAE: serious adverse event, TCS: topical corticosteroid, TCI: topical corticoinhibitor, TEAE: treatment-emergent adverse event.

Table G1.50. Baseline Characteristics I⁸⁶⁻⁹⁶

C. I.N.	_		Age	(years)	Ma	ale	W	hite	Disease d	uration (years)
Study Name	Arms	N	mean	SD	n	%	n	%	mean	SD
				Ruxolitinib Cı	ream		I			
	Vehicle cream	126	Median: 31.5	Range: 12 to 82	47	37.3	85	67.5	Median: 17.9	Range: 1.9 to 79.1
TRuE AD 1	RUX 0.75%	252	Median: 34.0	Range: 12 to 85	98	38.9	171	67.9	Median: 14.1	Range: 1.0 to 68.8
	RUX 1.5%	253	Median: 30.0	Range: 12 to 77	95	37.5	175	69.2	Median: 16.0	Range: 0 to 69.2
	Vehicle cream	124	Median: 37.5	Range: 12 to 82	44	35.5	84	67.7	Median: 15.9	Range: 0.8 to 70.7
TRuE AD 2	RUX 0.75%	248	Median: 33.0	Range: 12 to 81	98	39.5	174	70.2	Median: 15.9	Range: 0.1 to 68.6
	RUX 1.5%	246	Median: 32.0	Range: 12 to 85	96	39	178	72.4	Median: 16.6	Range: 0 to 68.8
	Vehicle cream	174	Median: 34.5	Range: 12 to 82	57	35.1	117	67.2	Median: 15.5	Range: 0.8 to 79.1
Subgroup	RUX 0.75%	213	Median: 37.0	Range: 12 to 85	96	45.1	138	64.8	Median: 14.0	Range: 1.8 to 68.6
Analysis – Partial response	RUX 1.5%	197	Median: 28.0	Range: 12 to 84	70	35.5	124	62.9	Median: 14.9	Range: 0.2 to 69.2
response	Total	584	Median 33.0	Range: 12 to 85	227	38.9	379	64.9	Median: 14.9	Range: 0.2 to 79.1
	Vehicle cream	13	Median: 41.0	Range: 12 to 63	6	46.2	11	84.6	Median: 17.0	Range: 2.1 to 60.1
Subgroup	RUX 0.75%	36	Median 45.5	Range: 12 to 75	12	33.3	27	75	Median: 18.2	Range: 1.9 to 55.8
Analysis – BSA >10, EASI > 16	RUX 1.5%	32	Median: 26.5	Range: 13 to 85	15	46.9	27	84.4	Median: 18.1	Range: 1.9 to 60.1
>10, LASI > 10	Total	81	Median: 34.0	Range: 12 to 85	33	40.7	65	80.2	Median: 17.0	Range: 2.1 to 60.1
	Vehicle cream	52	Median 31.5	Range: 18 to 69	20	38.5	27	51.9	Median: 19.5	Range: 2.2 to 65.3
51	RUX 1.5%	50	Median: 35.5	Range: 18 to 70	24	52	33	66	Median: 21.2	Range: 0.1 to 64.8
Phase II Kim 2020	TAC 0.1%	51	Median: 35.0	Range: 18 to 69	23	45.1	28	54.9	Median: 24.8	Range: 2.3 to 62.2
	Total	307	Median: 35.0	Range: 18 to 70	139	45.3	172	56	Median: 20.8	Range: 0.1 to 66.1
			•	Crisaboro	le	•				
AD 201	CRIS	503	12	NR	219	43.5	308	61.2	NR	NR
AD 301	Vehicle cream	256	12.4	NR	113	44.1	162	63.3	NR	NR
AD 202	CRIS	513	12.6	NR	231	45	309	60.2	NR	NR
AD 302	Vehicle cream	250	11.8	NR	112	44.8	144	57.6	NR	NR

a. 1 a.	_		Age	(years)	Ma	ale	White		Disease duration (years)		
Study Name	Arms	N	mean	SD	n	%	n	%	mean	SD	
Post-Hoc AD	CRIS	1016	12.3	12.2	450	44.3	617	60.7	NR	NR	
301/302	Vehicle cream	506	12.1	11.7	225	44.5	306	60.5	NR	NR	
	2-11 years	308	6.1	2.8	131	42.5	189	61.4	NR	NR	
AD 202	12-17 years	146	14	1.5	61	41.8	94	64.4	NR	NR	
AD 303	>18 years	63	34	13.4	19	30.2	32	50.8	NR	NR	
	Total	517	11.7	10.4	211	40.8	315	60.9	NR	NR	
	Non-PK	116	13.7	6.4	75	64.7	71	61.2	10.4	6.4	
CrisADe CARE 1	PK	21	12.7	6.6	13	61.9	13	61.9	9.1	5.5	
	Total	137	13.6	6.4	88	64.2	84	61.3	10.2	6.3	

None of these baseline characteristics were available in the ruxolitinib pooled analysis. No trials reported on weight (kg) at baseline. CRIS: crisaborole, n: number, N: total number, NR: not reported, PK: pharmacokinetic, RUX: ruxolitinib, SD: standard deviation, TAC: triamcinolone acetonide cream, %: percent. *for these baseline data, N=250, *for these baseline data, N=499.

Table G1.51. Baseline Characteristics II^{86-89,91-96,98-100,102}

				Dise	ase Seve	erity, n (9	%)		EASI	score	% BSA	affected
Study Name	Arms	N	Mile	d	Moder	ate (3)	Seve	ere (4)		CD.		CD
			n	%	n	%	n	%	mean	SD	mean	SD
				Rux	colitinib	Cream						
	Vehicle cream	126	31	24.6	95	75.4	NA	NA	7.4	4.3	9.2	5.1
TRuE AD 1	RUX 0.75%	252	61	24.2	191	75.8	NA	NA	8.2	4.8	9.9	5.4
	RUX 1.5%	253	60	23.7	193	76.3	NA	NA	7.9	4.6	9.3	5.2
	Vehicle cream	124	33	26.6	91	73.4	NA	NA	8.2	5.2	10.1	5.8
TRuE AD 2	RUX 0.75%	248	64	25.8	184	74.2	NA	NA	8.1	5.0	10.1	5.3
	RUX 1.5%	246	63	25.6	183	74.4	NA	NA	7.8	4.9	9.9	5.4
	Vehicle cream	174	55	31.6	119	68.4	NA	NA	7.9	4.9	9.3	5.3
Subgroup analysis –	RUX 0.75%	213	83	39	130	61	NA	NA	7.8	5.3	9.9	5.2
Partial response	RUX 1.5%	197	80	40.6	117	59.4	NA	NA	7.2	4.7	9.1	5.1
	Total	584	218	37.3	366	62.7	NA	NA	7.6	5	9.5	5.2
	Vehicle cream	13	0	0	13	100	NA	NA	20.2	2.9	17.7	3.3
Subgroup analysis – BSA	RUX 0.75%	36	3	8.3	33	91.7	NA	NA	19.4	3.4	16.6	3
>10 EASI > 16	RUX 1.5%	32	0	0	32	100	NA	NA	19.3	2.9	18	1.9
	Total	81	3	3.7	78	96.3	NA	NA	19.5	3.1	17.3	2.7
	Vehicle cream	52	15	28.8	36	69.2	NA	NA	8.6	5.1	9.5	5
Phase II	RUX 1.5%	50	14	28	36	72	NA	NA	8.4	4.7	10.5	5.2
Kim 2020	TAC 0.1%	51	18	35.3	33	64.7	NA	NA	8.4	4.7	9.9	5.5
	Total	307	95	30.9	210	68.4	NA	NA	8.4	4.7	9.6	5.4
					Crisabor	ole						
AD 201	CRIS	503	196	39	307	61	NA	NA	NR	NR	18.8	Range: 5 to 95
AD 301	Vehicle cream	256	93	36.3	163	63.7	NA	NA	NR	NR	18.6	Range: 5 to 90
AD 302	CRIS	513	197	38.4	316	61.6	NA	NA	NR	NR	17.9	Range: 5 to 95

				Dise	ase Seve	erity, n (S	%)		EASI	score	% BSA affected	
Study Name	Arms	N	Mile	d	Moder	ate (3)	Seve	ere (4)		SD		SD
			n	%	n	%	n	%	mean	30	mean	20
	Vehicle cream	250	100	40	150	60	NA	NA	NR	NR	17.7	Range: 5 to 90
Doct Use AD 201/202	CRIS	1016	393	38.7	623	61.3	NA	NA	NR	NR	18.3	18.0
Post-Hoc AD 301/302	Vehicle cream	506	193	38.1	313	61.9	NA	NA	NR	NR	18.1	17.3
	Non-PK	116	52	44.8	64	55.2	0	0	10.4	8.2	23.5	20.1
-	PK	21	0	0	20	95.2	1	4.8	19.8	4.4	53.5	12.6
	Total	137	52	38	84	61.3	1	0.7	11.8	8.4	28.1	22

None of these baseline characteristics were available in the ruxolitinib pooled analysis, Simpson 2021, and AD 303. BSA: body surface area, CRIS: crisaborole, n: number, N: total number, NA: not applicable, NR: not reported, PK: pharmacokinetic, RUX: ruxolitinib, SD: standard deviation, TAC: triamcinolone acetonide cream, %: percent. *for these baseline data, N=250, †for these baseline data, N=500, †for these baseline data, N=499.

Table G1.52. Baseline Characteristics III^{86-96,98-100,102}

			Itch or	PP-NRS	DL	QI	РО	EM	CD	LQI		Pre	vious Tr	eatmen	ts	
Study Name	Arms	N	mean	SD	mean	SD	mean	SD	mean	SD	Topi corticos		calcin	ical eurin itors	Syste stero	
											n	%	n	%	n	%
						Ru	ıxolitinib	Cream								
							Week	8								
TDE	Vehicle cream	126	5.1	2.5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
TRuE AD 1	RUX 0.75%	252	5.1	2.3	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
	RUX 1.5%	253	5.2	2.5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
TDE	Vehicle cream	124	5.1	2.4	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
TRuE AD 2	RUX 0.75%	248	5.2	2.5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
AD Z	RUX 1.5%	246	4.9	2.5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Simpson 2021	RUX pooled	1249	5.1	2.4	NR	NR	NR	NR	NR	NR	408*	32.7	269	21.5	218.6	17.5

			Itch or	PP-NRS	DL	રા	РО	EM	CD	LQI		Prev	vious Tr	eatmen	ts	
Study Name	Arms	N	mean	SD	mean	SD	mean	SD	mean	SD	Top corticos		calcin	oical neurin oitors	Syste	
											n	%	n	%	n	%
						١	Weeks 4/	8/12								
	Vehicle cream	52	6	2.1	NR	NR	NR	NR	NA	NA	NR	NR	NR	NR	NR	NR
Phase II Kim	RUX 1.5%	50	5.9	2.3	NR	NR	NR	NR	NA	NA	NR	NR	NR	NR	NR	NR
2020	TAC 0.1%	51	5.2	2.2	NR	NR	NR	NR	NA	NA	NR	NR	NR	NR	NR	NR
2020	Total	307	6	2.1	NR	NR	NR	NR	NA	NA	NR	NR	NR	NR	NR	NR
							Crisabo	role								
						V	Veek 4/D	ay 29								
Post-	CRIS	1016	NR	NR	9.7 ^{†¥}	6.3	NR	NR	9.3 ^{‡§}	6.0	NR	NR	NR	NR	NR	NR
Hoc AD 301/302	Vehicle cream	506	NR	NR	9.3 ^{†#}	6.6	NR	NR	9 [‡] **	6.0	NR	NR	NR	NR	NR	NR
CricADo	Non-PK	116	NR	NR	NR	NR	13.9	5.9	NR	NR	63	54.3	2	1.7	NR	NR
CrisADe CARE 1	PK	21	NR	NR	NR	NR	19.7	5.2	NR	NR	9	49.2	0	0	NR	NR
CAILLI	Total	137	NR	NR	NR	NR	14.8	6.1	NR	NR	72	52.6	2	1.5	NR	NR

None of these baseline characteristics were available in the ruxolitinib pooled analysis, AD 301, AD 302, and AD303. No trials reported on previous treatment use with antibiotics, crisaborole, topical agents alone, mycophenolate, cyclosporine, methotrexate, azathioprine, systemic agents, or dupilumab. Baseline data on SCORAD, PSSAD, total HADS, HADS anxiety, and HADS depression were not reported in any trials. CRIS: crisaborole, n: number, N: total number, NR: not reported, PK: pharmacokinetic, RUX: ruxolitinib, SD: standard deviation, TAC: triamcinolone acetonide cream, %: percent. *high potency topical corticosteroids, †population reported here is adolescents and adults ages ≥16 years, ‡population reported here is children ages 2-15 years, ¥N=201, #N=94, \$N=815, **N=412, †for these baseline data, N=250, ‡for these baseline data, N=500, ¥for these baseline data, N=499.

Table G1.53. Efficacy Outcomes: IGA Response Rates⁸⁶⁻⁹⁷

Charles Name	A	81				IGA response		
Study Name	Arm	N	N	n	%	Diff from PBO	95% CI	p value
			Rux	colitinib Crea	ım			
				Week 8				
	Vehicle cream	126	126	20	15.1	REF	REF	REF
TRuE AD 1	RUX 0.75%	252	252	126	50.0	34.9	26.1 to 43.7	<0.0001
	RUX 1.5%	253	253	137	53.8	38.7	29.9 to 47.4	<0.0001
	Vehicle cream	124	124	10	7.6	REF	REF	REF
TRuE AD 2	RUX 0.75%	248	248	97	39.0	31.3	23.4 to 39.2	<0.0001
	RUX 1.5%	246	246	127	51.3	43.7	35.6 to 51.8	<0.0001
Subgroup	Vehicle cream	174	174	75	43.1	NR	NR	REF
analysis –	RUX 0.75%	213	213	153	71.8	NR	NR	<0.0001
partial response	RUX 1.5%	197	197	140	71.1	NR	NR	<0.0001
Subgroup	Vehicle cream	13	13	0	0	NR	NR	NR
analysis – BSA	RUX 0.75%	36	36	18	50	NR	NR	NR
> 10, EASI > 16	RUX 1.5%	32	32	19	59.4	NR	NR	NR
		•		Week 4				
	Vehicle cream	52	52	4	7.7	NR	NR	REF
	TAC 0.1% BID	51	51	13	25.5	NR	NR	NS
	RUX 1.5% BID	50	50	20	38	NR	NR	<0.001
		•		W	/eek 8			
	Vehicle cream	52	52	5	9.6	NR	NR	REF
Phase II Kim 2020	TAC 0.1% BID	40	40	8	20	NR	NR	NR
KIIII 2020	RUX 1.5% BID	50	50	24	48	NR	NR	<0.0001
				W	eek 12			
	Vehicle cream	52	36	19	52.8	NR	NR	NR
	TAC 0.1% BID	39	39	26	66.7	NR	NR	NR
	RUX 1.5% BID	50	41	24	58.5	NR	NR	NR
	•	•	•	Crisaborole	•	•	•	•

Charles Name	A	N			ı	GA response		
Study Name	Arm	N	N	n	%	Diff from PBO	95% CI	p value
			W	eek 4/Day 2	9			
AD 201	CRIS	503	503	260	51.7	NR	NR	0.005
AD 301	Vehicle cream	256	256	104	40.6	NR	NR	REF
AD 202	CRIS	513	513	249	48.5	NR	NR	<0.001
AD 302	Vehicle cream	250	250	74	29.7	NR	NR	REF
CrisADe CARE 1	Overall population	137	129	61	47.3	NR	NR	NR

Data on IGA were not available in the Post-Hoc Analysis for AD 301/302. BID: twice daily, CI: confidence interval, CRIS: crisaborole, Diff: difference, n: number, N: total number, NR: not reported, NS: not significant, PBO: placebo, REF: reference, RUX: ruxolitinib cream, SE: standard error, TAC: triamcinolone acetonide cream, %: percent.

Table G1.54. Long term Efficacy Outcomes: IGA Response Rates^{73,74}

Charles Name	A				ı	GA response		
Study Name	Arm	N	N	n	%	Diff from PBO	95% CI	p value
			R	uxolitinib Cre	eam			
				Week 52				
	Vehicle cream to 0.75% RUX	NR	38	29	76.3	NR	NR	NR
TRuE AD 1	Vehicle cream to 1.5% RUX	NR	38	28	73.7	NR	NR	NR
TRUE AD I	RUX 0.75%	NR	173	133	76.9	NR	NR	NR
	RUX 1.5%	NR	171	129	75.4	NR	NR	NR
	Vehicle cream to 0.75% RUX	NR	34	27	79.4	NR	NR	NR
	Vehicle cream to 1.5% RUX	NR	43	32	74.4	NR	NR	NR
TRuE AD 2	RUX 0.75%	NR	150	115	76.7	NR	NR	NR
	RUX 1.5%	NR	171	137	80.1	NR	NR	NR
Subgroup Analysis—	RUX 0.75%	39	30	20	66.7	NR	NR	NR
more severe	RUX 1.5%	36	23	18	78.3	NR	NR	NR

There were no long-term data on IGA available in any of the crisaborole trials. CI: confidence interval, Diff: difference, n: number, N: total number, NR: not reported, PBO: placebo, REF: reference, RUX: ruxolitinib cream, %: percent.

Table G1.55. Efficacy Outcomes: EASI Response Rates^{86-90,97,98,100,102}

		EAS	1 50			EASI 75			EASI	90
Study Name	Arms	n/N	%	n/N	%	Diff from PBO	95% CI	p value	n/N	%
				Ruxolitir	nib Cream					
				We	ek 8					
	Vehicle cream	NR	NR	31/126	24.6	REF	REF	REF	12/126	9.5
TRuE AD 1	RUX 0.75%	NR	NR	142/252	56.0	31.4	21.7 to 41.1	<0.0001	96/252	38.1
	RUX 1.5%	NR	NR	158/253	62.1	37.5	27.8 to 47.1	<0.0001	112/253	44.3
	Vehicle cream	NR	NR	18/124	14.4	REF	REF	REF	5/118	4.2
TRuE AD 2	RUX 0.75%	NR	NR	128/248	51.5	37.1	28.1 to 46.2	<0.0001	81/231	35.1
	RUX 1.5%	NR	NR	153/246	61.8	47.4	38.5 to 56.4	<0.0001	99/228	43.4
Subgroup	Vehicle cream	67/174	38.5	NR	NR	NR	NR	NR	NR	NR
analysis – partial	RUX 0.75%	136/213	63.8	NR	NR	NR	NR	NR	NR	NR
response	RUX 1.5%	128/197	65	NR	NR	NR	NR	NR	NR	NR
Subgroup	Vehicle cream	5/13	38.5	1/13	7.7	NR	NR	NR	1/13	7.7
analysis – BSA >	RUX 0.75%	29/36	80.6	27/36	75	NR	NR	NR	19/36	52.8
10, EASI > 16	RUX 1.5%	25/32	78.1	23/32	71.9	NR	NR	NR	15/32	46.9
					Wee	k 4				
	Vehicle cream	41/52	78	9/52	17.3	NR	NR	REF	3/52	5.8
	TRI 0.1% BID	34/51	66.7	24/51	47.1	NR	NR	NR	7/51	13.7
Phase II	RUX 1.5% BID	12/50	23.1	28/50	56	48.6	NR	<0.001	13/50	26
Kim 2020					Week	12				
	Vehicle cream	NR	NR	NR	NR	NR	NR	NR	NR	NR
	TRI 0.1% BID	NR	NR	NR	NR	NR	NR	NR	NR	NR
	RUX 1.5% BID	37/39	95.1	22/30	73.2	NR	NR	NR	14/50	56.1

Data on EASI 50 and EASI 90 were not available in Phase II Kim 2020 at 8 weeks and crisaborole trials AD 301, AD 302, Post-Hoc AD 301/302, and CrisADe CARE

^{1.} There were no Difference vs. placebo, 95% confidence intervals, or p-values available for EASI 50 and EASI 75 responses. BID: twice daily, CI: confidence

interval, CRIS: crisaborole, n: number, Diff: difference, N: total number, NR: not reported, NS: not significant, PBO: placebo, REF: reference, RUX: ruxolitinib, SE: standard error, TAC: Triamcinolone acetonide cream, %: percent.

Table G1.56. Efficacy Outcomes: PP-NRS Response Rates^{86-89,97,100,102}

				Itch or PP-N	IRS (≥4-point i	improvement	from baseline)	
Study Name	Arms	N	n/N	%	SD	Diff from PBO	95% CI	p value
			Ruxo	litinib Cream		•		
			,	Week 8				
	Vehicle cream	126	20/126	15.4	SE: 4.1	REF	REF	REF
TRuE AD 1	RUX 0.75%	252	102/252	40.4	SE: 3.9	25	13.9 to 36.1	<0.001
	RUX 1.5%	253	133/253	52.2	SE: 3.9	36.8	25.7 to 47.9	<0.0001
	Vehicle cream	124	21/124	16.3	SE: 4.1	REF	REF	REF
TRuE AD 2	RUX 0.75%	248	106/248	42.7	SE: 4.0	26.4	15.2 to 37.6	<0.0001
	RUX 1.5%	246	125/246	50.7	SE: 4.1	34.4	23.0 to 45.9	<0.0001
	Vehicle cream	13	3/11	27.3	NR	NR	NR	NR
Subgroup analysis – BSA > 10, EASI > 16	RUX 0.75%	36	13/26	50	NR	NR	NR	NR
B3A > 10, LA3I > 10	RUX 1.5%	32	11/16	61.1	NR	NR	NR	NR
				Week 4	4			
	Vehicle cream	52	4/36	11.1*	NR	NR	NR	REF
	TAC 0.1% BID	51	6/31	19.4*	NR	NR	NR	NS
Phase II	RUX 1.5% BID	50	25/40	62.5*	NR	NR	NR	<0.001
Kim 2020		·		Week 8	3	•		
	Vehicle cream	52	5/35	14.3*	NR	NR	NR	REF
	TAC 0.1% BID	40	10/31	32.3*	NR	NR	NR	NS
	RUX 1.5% BID	50	22/38	57.9*	NR	NR	NR	<0.001

Data on PP-NRS were not available in the subgroup analysis on partial responders, Phase II Kim 2020 at 12 weeks and crisaborole trials AD 301, AD 302, Post-Hoc AD 301/302. BID: twice daily, CI: confidence interval, Diff: difference, n: number, N: total number, NR: not reported, NS: not significant, PBO: placebo, REF: reference, RUX: ruxolitinib, SD: standard deviation, SE: standard error, TAC: Triamcinolone acetonide cream, %: percent. *marked as clinically relevant improvements

Table G1.57. SCORAD^{88,89}

	Agent(s)		Ruxolitinib Cream	
	Timepoint		Week 8	
	Study Name		Pooled Analysis	
	Arms	Vehicle cream	RUX 1.5%	
	N	244	483	481
	Change from baseline	-30.4	-62.9	-67.3
SCORAD	SD	NR	NR	NR
	Diff from PBO	NR	NR	NR
	95% CI	NR	NR	NR
	p value	REF	<0.0001	<0.0001

Data on SCORAD were available only in the ruxolitinib pooled analysis. CI: confidence interval, Diff: difference, N: total number, NR: not reported, PBO: placebo, REF: reference, RUX: ruxolitinib, SD: standard deviation.

Table G1.58. DLQI, CLDQI, POEM^{91,92,94,96,98}

	Agent(s)	Ru	xolitinib Cre	am		Crisaborole	
	Timepoint		Week 8			Week 4/Day 29	
	Study Name	Р	ooled Analys	sis	Post-Hoo	AD 301/302	CrisADe CARE 1
	Arms	Vehicle cream	RUX 0.75%	RUX 1.5%	CRIS	Vehicle cream	Overall
	N	169	355	386	180	82	137
DIO	Change from baseline	-3.1	-7.2	-7.1	-5.2	-3.5	NR
DLQI	SD	NR	NR	NR	NR	NR	NR
	p value	REF	<0.001	<0.001	0.015	REF	NR
	N	27	66	53	750*	355*	NR
CDLQI	Change from baseline	-2.3	-5.3	-6	-4.6	-3	NR
CDLQI	SD	NR	NR	NR	NR	NR	NR
	p value	NR	NR	NR	<0.001	REF	NR
	N	197	422	438	NR	NR	130
POEM	Change from baseline	-4.2	-10.5	-11	NR	NR	-8.5
POEIVI	SD	NR	NR	NR	NR	NR	0.51
	p value	REF	<0.001	<0.001	NR	NR	NR

Data on DLQI, CDLQI, and POEM were available on in Post-Hoc AD 301/302 and CrisADe CARE 1. No trials reported on HADS, HADS Anxiety or HADS Depression. CRIS: crisaborole, N: total number, NR: not reported, REF: reference, SD: standard deviation. *population reported here is children ages 2-15.

Table G1.59. Safety^{85-96,98,102}

Trial	Arms	N	TE	AE	-	Drug- ed AEs	D/C d		Seri TE	ious AE		cation Pain		cation urning		cation ruritus		ction
	75		n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
			u .	<u>I</u>			I.	We	ek 8		U	l	I.	l.		·	u.	
TRuE AD 1	Vehicle cream	126	44	34.9	16*	12.7	5 [†]	4	2	1.6	NR	NR	2	1.6	2	1.6	NR	NR
	RUX 0.75%	252	74	29.4	15*	6.0	3 [†]	1.2	1	0.4	NR	NR	0	0	2	0.8	NR	NR
	RUX 1.5%	253	73	28.9	14*	5.5	3 [†]	1.2	2	0.8	NR	NR	2	0.8	0	0	NR	NR
	Vehicle cream	124	40	32.3	12*	9.7	3 [†]	2.4	0	0	NR	NR	8	6.5	4	3.2	NR	NR
TRuE AD 2	RUX 0.75%	248	73	29.4	8*	3.2	1 [†]	0.4	3	1.2	NR	NR	2	0.8	2	0.8	NR	NR
	RUX 1.5%	246	58	23.6	11*	4.5	O [†]	0	1	0.4	NR	NR	2	0.8	0	0	NR	NR
Subgroup – BSA >	Vehicle cream	13	6	46.2	5	38.5	1 [†]	7.7	1	7.7	2	15.4	NR	NR	NR	NR	NR	NR
10, EASI >	RUX 0.75%	36	14	38.9	1	2.8	O [†]	0	0	0	0	0	NR	NR	NR	NR	NR	NR
16	RUX 1.5%	32	10	31.3	3	9.4	O [†]	0	0	0	0	0	NR	NR	NR	NR	NR	NR
	Vehicle cream	52	17	32.7	5*	9.6	1 [†]	1.9	0	0	2	3.8	NR	NR	NR	NR	NR	NR
	TAC 0.1%	51	17	33.3	1*	2	1 [†]	2	1	2	0	0	NR	NR	NR	NR	NR	NR
	RUX 1.5%	50	12	24	3*	6	O [†]	0	0	0	1	2	NR	NR	NR	NR	NR	NR
Phase II								We	ek 12									
Kim 2020	Vehicle cream	41	5	12.2	0*	0	0 [†]	0	0	0	NR	NR	NR	NR	NR	NR	NR	NR
	TAC 0.1%	40	11	227. 5	0*	0	0†	0	0	0	NR	NR	NR	NR	NR	NR	NR	NR
	RUX 1.5%	43	17	39.5	0*	0	0 [†]	0	0	0	NR	NR	NR	NR	NR	NR	NR	NR
B 1 145								We	ek 4									
Pooled AD 301/302	CRIS	1012	954	94.3	217	21.4	12	1.2	NR	NR	45	4.4	NR	NR	5	0.5	1 [‡]	0.1
301/302	Vehicle	499	484	96.9	79	15.8	6	1.2	NR	NR	6	1.2	NR	NR	6	1.2	5 [‡]	1
AD 303								We	ek 48									

Trial	Trial Arms		TEAE N		Study Drug- D/ Related AEs			D/C due to AE		Serious TEAE		Application Site Pain		cation urning	Application Site Pruritus		Skin Infection	
ITIAI	Aillis	IN IN	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
	2-11	308							NR	NR	6	1.9	NR	NR	1	0.3	12 [¥]	3.9
	12-17	146	ND	ND	F2	10.2	_	17	NR	NR	5	3.4	NR	NR	0	01	3 [¥]	2.1
	>18	63	NR	NR	53	10.3	9	1.7	NR	NR	1	1.6	NR	NR	1	1.6 [¶]	0 [¥]	0
	Total	517							NR	NR	12	2.3	NR	NR	2	0.4 ¹	15	2.9
CrisADe		Week 8																
CARE 1	Overall	137	88	64.2	22	16.1	4	2.9	NR	NR	5	3.6	4#	2.9	NR	NR	1 §	0.7

None of these safety data were available in the ruxolitinib pooled analysis and Simpson 2021. No trials reported on safety data related to any AEs, Serious AE, MACE, venous thromboembolism, herpes infection, serious infection, malignancy, non-melanocytic skin cancer. AD301/302 and 303 reported no deaths across all arms. Only CrisADe CARE 1 reported conjunctivitis (3.6%). AE: adverse event, CRIS: crisaborole, D/C: discontinuation, n: number, N: total number, NR: not reported, RUX: ruxolitinib cream, TAC: Triamcinolone acetonide cream, TEAE: treatment-emergent adverse event, %: percent. *study drug-related TEAE, †discontinuation due to TEAE, †staphylococcal skin infection, ¶application site dermatitis, ¥infections and infestations, #discomfort, §skin irritation.

Table G1.60. Long Term Safety^{73,74}

Trial	Arms	N	TE	AE	_	Drug- ed AEs	D/C d A		Seriou	is TEAE		cation Pain		cation urning		cation ruritus
IIIai	Ailis		n	%	n	%	n	%	n	%	n	%	n	%	n	%
			•			W	eek 52	•		•	•	•	•			
	Vehicle cream to 0.75% RUX	101	54	53.5	2	2	0	0	5	5	NR	NR	101	54	53.5	2
TRuE AD 1	Vehicle cream to 1.5% RUX	99	57	57.6	6	6.1	0	0	1	1	NR	NR	99	57	57.6	6
	RUX 0.75%	426	256	60.1	20	4.7	9	2.1	10	2.3	NR	NR	426	256	60.1	20
	RUX 1.5%	446	240	53.8	13	2.9	0	0	6	1.3	NR	NR	446	240	53.8	13
	Vehicle cream to 0.75% RUX	39	28	71.8	6	15.4	0	0	1	2.6	1	2.6	39	28	71.8	6
TRuE AD 2	Vehicle cream to 1.5% RUX	36	24	66.7	6	16.7	0	0	1	2.8	2	5.6	36	24	66.7	6
TRUE AD 2	RUX 0.75%	101	54	53.5	2	2	0	0	5	5	NR	NR	101	54	53.5	2
	RUX 1.5%	99	57	57.6	6	6.1	0	0	1	1	NR	NR	99	57	57.6	6
	RUX 0.75%	426	256	60.1	20	4.7	9	2.1	10	2.3	NR	NR	426	256	60.1	20
Subgroup Analysis—	RUX 0.75%	446	240	53.8	13	2.9	0	0	6	1.3	NR	NR	446	240	53.8	13
more severe	RUX 1.5%	39	28	71.8	6	15.4	0	0	1	2.6	1	2.6	39	28	71.8	6

No trials reported on safety data related to any AEs, Serious AE, MACE, venous thromboembolism, herpes infection, serious infection, malignancy, non-melanocytic skin cancer. D/C: discontinuation, n: number, N: total number, NR: not reported, RUX: ruxolitinib cream, TEAE: treatment-emergent adverse event, %: percent

Table G1.61. Efficacy Outcomes by Subgroup: IGA 101,103

							IGA response		
Study	Arm	Category	N	n	N	%	Diff from PBO	95% CI	p value
			Ruxolit	inib					
	Vehicle cream	Agos 12 to	250	6	43	14	NR	NR	NR
	RUX 0.75%	Ages 12 to 17	500	50	106	47.2	NR	NR	NR
	RUX 1.5%	17	499	44	87	50.6	NR	NR	NR
	Vehicle cream	A 705 10 to	250	18	175	10.3	NR	NR	NR
	RUX 0.75%	Ages 18 to 64	500	150	327	45.9	NR	NR	NR
	RUX 1.5%	04	499	186	356	52.2	NR	NR	NR
	Vehicle cream		250	4	26	15.4	NR	NR	NR
Pooled Analysis	RUX 0.75%	>65	500	16	50	32	NR	NR	NR
	RUX 1.5%		499	23	38	60.5	NR	NR	NR
	Vehicle cream		250	1	64	1.6	NR	NR	NR
	RUX 0.75%	IGA 2	500	24	125	19.2	NR	NR	NR
	RUX 1.5%		499	31	123	25.2	NR	NR	NR
	Vehicle cream		250	27	180	15	NR	NR	NR
	RUX 0.75%	IGA 3	500	192	358	53.6	NR	NR	NR
	RUX 1.5%		499	222	358	62	NR	NR	NR
			Crisabo	role	I	ı			
	CDIC	Mild	1016	NR	NR	71.4	NR	NR	0.0024
	CRIS	Moderate	1016	NR	NR	36.7	NR	NR	<0.001
	V 1 : 1	Mild	506	NR	NR	56.7	NR	REF	NR
	Vehicle cream	Moderate	506	NR	NR	22.3	NR	REF	NR
		2 to <7	506	NR	NR	30.5	NR	NR	0.064
Yosipovitch	CDIC	7 to <12	436	NR	NR	36.6	NR	NR	0.0037
2018	CRIS	12 to <18	371	NR	NR	30.3	NR	NR	0.026
		18+	209	NR	NR	29.7	NR	NR	0.46
		2 to <7	506	NR	NR	21.8	NR	NR	REF
		2 to <12	436	NR	NR	22.9	NR	NR	REF
	Vehicle cream	12 to <18	371	NR	NR	19.4	NR	NR	REF
		18+	209	NR	NR	24.7	NR	NR	REF
	CDIC	Mild	07.	NR	NR	72.3	NR	NR	<0.05
Eichenfield	CRIS	Moderate	874	NR	NR	37.1	NR	NR	REF
2020	V 1 · · ·	Mild	422	NR	NR	55.9	NR	NR	<0.0001
(ages 2-17)	Vehicle cream	Moderate	439	NR	NR	21.4	NR	NR	REF

CI: confidence interval, CRIS: crisaborole, Diff: difference, n: number, N: total number, NR: not reported, PBO: placebo, REF: reference, RUX: ruxolitinib, %: percent.

Table G1.62. Efficacy Outcomes by Subgroup: EASI 50^{101,103}

Ctudy	Arm	Catagory	N				EASI 50		
Study	AIIII	Category	IN	n	N	%	Diff from PBO	95% CI	p value
			Ruxoli	tinib					
	Vehicle cream		250	21	43	48.8	NR	NR	NR
	RUX 0.75%	Ages 12 to 17	500	79	106	74.5	NR	NR	NR
	RUX 1.5%		499	73	87	83.9	NR	NR	NR
	Vehicle cream		250	64	175	36.6	NR	NR	NR
	RUX 0.75%	Ages 18 to 64	500	239	327	73.1	NR	NR	NR
	RUX 1.5%		499	274	356	77	NR	NR	NR
	Vehicle cream		250	10	26	38.5	NR	NR	NR
Pooled Analysis	RUX 0.75%	>65	500	32	50	64	NR	NR	NR
	RUX 1.5%		499	32	38	84.2	NR	NR	NR
	Vehicle cream		250	27	64	42.2	NR	NR	NR
	RUX 0.75%	IGA 2	500	81	125	64.8	NR	NR	NR
	RUX 1.5%		499	88	123	71.5	NR	NR	NR
	Vehicle cream		250	68	180	37.8	NR	NR	NR
	RUX 0.75%	IGA 3	500	269	358	75.1	NR	NR	NR
	RUX 1.5%		499	291	358	81.3	NR	NR	NR

Subgroup data on this outcome were not available in any of the crisaborole trials. CI: confidence interval, Diff: difference, n: number, N: total number, NR: not reported, PBO: placebo, RUX: ruxolitinib, %: percent.

Table G1.63. Efficacy Outcomes by Subgroup: EASI 75 and EASI $90^{101,103}$

					E	ASI 75		EASI 90				
Study name	Arm	Category	N	n	N	%	p value	n	N	%	p value	
	_		Rux	olitini	b			•				
	Vehicle cream	Ages 12 to	250	15	43	34.9	NR	3	43	7	NR	
	RUX 0.75%	17	500	58	106	54.7	NR	44	106	41.5	NR	
	RUX 1.5%		499	53	87	60.9	NR	34	87	39.1	NR	
	Vehicle cream	Ages 18 to	250	29	175	16.6	NR	13	175	7.4	NR	
	RUX 0.75%	64	500	180	327	55	NR	120	327	36.7	NR	
	RUX 1.5%		499	217	356	61	NR	158	356	44.4	NR	
Pooled	Vehicle cream		250	4	26	15.4	NR	1	26	3.8	NR	
Analysis	RUX 0.75%	>65	500	22	50	44	NR	13	50	26	NR	
	RUX 1.5%	1	499	28	38	73.7	NR	19	38	50	NR	
	Vehicle cream	104.0	250	11	64	17.2	NR	7	64	10.9	NR	
	RUX 0.75%	IGA 2	500	57	125	45.6	NR	36	125	28.8	NR	
	RUX 1.5%	1	499	61	123	49.6	NR	41	123	33.3	NR	
	Vehicle cream	164.3	250	37	180	20.6	NR	10	180	5.6	NR	
	RUX 0.75%	IGA 3	500	203	358	56.7	NR	141	358	39.4	NR	
	RUX 1.5%	1	499	237	358	66.2	NR	170	358	47.5	NR	

Subgroup data on these outcomes were not available in any of the crisaborole trials. There were no Difference vs. placebo or 95% confidence intervals available for EASI 75 or EASI 90. n: number, N: total number, NR: not reported, RUX: ruxolitinib, %: percent.

Table G1.64. Efficacy Outcomes by Subgroup: PP-NRS ≥4^{101,103}

				Itch or PP-NRS (≥4-point improvement from baseline)								
Study	Arm	Category	N	n	N	%	Change from baseline	SD	p value			
			Ruxol	tinib		1						
	Vehicle cream		250	4	23	17.4	NR	NR	NR			
	RUX 0.75%	Ages 12 to 17	500	24	58	41.4	NR	NR	NR			
	RUX 1.5%	1/	499	25	48	52.1	NR	NR	NR			
	Vehicle cream	A 10 t -	250	18	118	15.3	NR	NR	NR			
	RUX 0.75%	Ages 18 to 64	500	93	219	42.5	NR	NR	NR			
	RUX 1.5%	04	499	119	233	51.1	NR	NR	NR			
	Vehicle cream		250	3	17	17.6	NR	NR	NR			
Pooled Analysis	RUX 0.75%	>65	500	13	36	36.1	NR	NR	NR			
	RUX 1.5%		499	14	26	53.8	NR	NR	NR			
	Vehicle cream		250	4	38	10.5	NR	NR	NR			
	RUX 0.75%	IGA 2	500	17	70	24.3	NR	NR	NR			
	RUX 1.5%		499	32	75	42.7	NR	NR	NR			
	Vehicle cream		250	21	120	17.5	NR	NR	NR			
	RUX 0.75%	IGA 3	500	113	243	46.5	NR	NR	NR			
	RUX 1.5%		499	126	232	54.3	NR	NR	NR			
			Crisab	orole								
	CRIS	Mild	1016	NR	209	70.2	NR	NR	0.05			
Yosipovitch	CNIS	Moderate	1010	NR	385	53.8	NR	NR	0.01			
2018	Vehicle cream	Mild	E06	NR	105	58.1	NR	NR	REF			
	venicie cream	Moderate	506	NR	188	39.1	NR	NR	REF			

CRIS: crisaborole, n: number, N: total number, NR: not reported, RUX: ruxolitinib, SD: standard deviation, %: percent.

H. Public Comments

This section includes summaries of the public comments prepared for the New England CEPAC Public Meeting on July 23, 2021. These summaries were prepared by those who delivered the public comments at the meeting and are presented in order of delivery. One speaker did not submit a summary of their public comments.

A video recording of all comments can be found <u>here</u>. Conflict of interest disclosures are included at the bottom of each statement for each speaker.

Andrew J. Thorpe, PhD, Pfizer Inc.
Senior Medical Director, US Dermatology Team Leader
North America Medical Affairs, Inflammation, and Immunology

Pfizer would like to acknowledge the ICER staff and consultants, and the numerous stakeholders who have contributed to the review of "JAK Inhibitors and Monoclonal Antibodies for the Treatment of Atopic Dermatitis (AD)."

Pfizer is dedicated to the development of breakthrough therapies that change patients' lives, including those living with AD. Abrocitinib is an oral, once-daily, small molecule that selectively inhibits JAK 1 and is under investigation for the treatment of moderate-to-severe AD. Over the course of our work, we have heard directly from patients, families, advocacy groups and healthcare providers about the profound clinical, humanistic, and economic impact of AD. We have incorporated these perspectives into our activities, particularly in selecting trial outcomes that are meaningful to patients.

Pfizer has announced positive results from our phase 2 and 3 clinical trial program, where abrocitinib has demonstrated significant improvements in AD measures, including rapid itch relief (for example, within 2 days for some patients as seen in pooled monotherapy studies¹), with a consistent safety and tolerability profile. In addition to the four trials included in ICER's network meta-analyses, we have also reported positive results from our adolescent phase 3 study (NCT03796676) and results from a responder-enriched, randomized withdrawal study (NCT03627767). We believe this body of evidence, inclusive of 20 distinct patient reported outcomes, coupled with longer-term safety data beyond 48 weeks, demonstrates the holistic value of abrocitinib and a favorable risk-benefit profile for patients who suffer from moderate-to-severe AD.

We appreciate that ICER has addressed many of the points Pfizer raised throughout the review process and highlight below elements of our recommended elevation of abrocitinib's Evidence Rating.

- 1. When considering the comparison of abrocitinib with standard of care, defined as "topical emollients," Pfizer recommends a change from "P/I" to B+, an "incremental or better" rating.
 - Our monotherapy studies²⁻⁵ demonstrated abrocitinib's significant improvement across IGA, EASI, itch and additional validated patient-reported outcomes compared with placebo. The monotherapy trials permitted the use of topical non-medicated emollients.
 - Confirming ICER's network meta-analysis, a recently published and peer-reviewed network meta-analysis by Silverberg and colleagues⁶ showed that abrocitinib was estimated to have a greater than 98% probability of superiority over placebo with respect to IGA and itch response.
- 2. When considering the Evidence Rating of abrocitinib compared with dupilumab, we recommend an elevation from "I" to B+, an "incremental or better" rating.
 - In the JADE (JAK1 Atopic Dermatitis Efficacy and Safety) COMPARE phase 3 clinical trial (NCT03720470)⁷, when compared to dupilumab, statistical superiority of abrocitinib 200 mg, and numerically higher response of abrocitinib 100 mg was achieved on the key secondary itch response at week 2.
 - In addition to patient-centered trial endpoints, patient preference is an important consideration not traditionally captured in network meta-analyses or economic models. A recently published patient preference study of systemic AD treatment attributes among 320 moderate-to-severe AD patients found that patients significantly preferred an oral daily administration over a biweekly subcutaneous injection and also preferred treatments with rapid onset of itch relief.8 We believe both of these characteristics of abrocitinib should be considered as part of the net health benefit rating compared with dupilumab.
- 3. ICER explained that a primary reason for not elevating abrocitinib's current Ratings centers around existing boxed warnings for oral JAK inhibitors for other indications. We fully recognize that safety is a critical consideration and component of a treatment's risk-benefit profile and ICER's Evidence Rating. The continuous assessment and reporting of the safety profile of our medicines is a priority and abrocitinib's long-term extension study, whose primary endpoint is safety, is ongoing. We are confident in the benefit-risk profile of abrocitinib as a treatment for moderate-to-severe atopic dermatitis.

In summary, Pfizer respectfully believes that the Evidence Rating of abrocitinib compared to standard of care and to dupilumab merits elevation as supported by the points highlighted here and in our prior Public Comments to ICER's Draft Evidence Report, posted on July 9, 2021.

Though we have some remaining concerns with the assessment, we acknowledge the efforts to seek and incorporate input from diverse stakeholders, especially considering a number of investigational agents are under active regulatory review. We believe that methods assessing the value of medicines

should continue improving, especially in their ability to capture patient-centered outcomes and preferences. Pfizer is dedicated to advancing such methodologies and is committed to working with stakeholders to identify solutions for creating a more effective, efficient, and equitable health care system for patients.

Dr. Thorpe is a full-time employee of Pfizer.

Meghan Feely, MD, FAAD, Eli Lilly Senior Medical Advisor, U.S. Medical Affairs, Bio-Medicines

Today, most patients with moderate-to-severe AD live a life of compromise, where topical therapies are no longer able to manage their AD. In patients with moderate-to-severe AD, a review of existing treatment patterns indicate that the use of topical regimens is followed by an inadequate response, leading to the use of short-term systemic therapies to attempt to control patients' worsening symptoms, but without achieving good disease control. After completion of short courses of conventional immunosuppressants or systemic corticosteroids, topical regimens are then resumed. This cycle fails to provide appropriate management of symptoms, but still few patients advance in their care to using dupilumab. Dupilumab is presently the only novel systemic agent approved for the treatment moderate-to-severe AD.¹ There is a significant unmet need in AD for moderate-to-severe patients who are failing topical treatments, but who are not willing to commit to indefinite treatment with an injectable biologic.

At this time, baricitinib is not FDA approved for the treatment of moderate-to-severe atopic dermatitis, though discussions with the FDA are ongoing. Lilly believes that Olumiant (baricitinib) is uniquely placed to serve patients with moderate-to-severe AD where short-term systemics and topical regimens are inadequately controlling disease, adding an additional treatment option for patients suffering from moderate-to-severe atopic dermatitis.

The BREEZE-AD5 clinical trial of baricitinib 2 mg in moderate-to-severe atopic dermatitis is a North American study that best represents the US population of patients impacted by this disease. In this trial, baricitinib 2 mg met the primary endpoint with 30% of patients with moderate-to-severe atopic dermatitis achieving at least a 75% or greater change from baseline in their Eczema Area and Severity Index (EASI) at week 16 compared to 8% of those taking placebo (P < .001 for 2 mg vs. placebo). In addition, adults with moderate-to-severe atopic dermatitis receiving baricitinib 2 mg monotherapy experienced improvements in skin inflammation, skin pain, itch, sleep disturbance due to itch and quality of life versus placebo-treated patients.

The safety profile in BREEZE-AD5 was consistent with the known safety findings of baricitinib in atopic dermatitis across the BREEZE-AD clinical trial program. The most common treatment-emergent adverse events included upper respiratory tract infections, nasopharyngitis, and diarrhea. No venous thromboembolic events or deaths were reported in the trial.² The drug was generally well tolerated with low rates of nausea (2.3%, adjusted percentage) and diarrhea (2.0%, adjusted percentage) reported in the 16-week placebo-controlled period across BREEZE-AD1 through BREEZE-AD6.³ Lilly submitted data on the lowest efficacious dose of baricitinib in atopic dermatitis to the FDA at 2 mg.^{2, 4-6}

We remain confident in the positive benefit-risk profile of Olumiant in this supplemental New Drug Application for the AD population and are committed to continuing to investigate its potential across the different indications being studied. There are more than 13,000 patient years and more than 8.4 years of exposure to Olumiant in rheumatoid arthritis clinical trials with no new safety concerns identified. We have ongoing Phase 3 programs in AD, alopecia areata, systemic lupus erythematosus and COVID-19 and have just recently published pooled safety data from eight clinical trials in AD collected for 2,531 patients who were given baricitinib for 2,247 patient-years (median duration 310 days). Lilly is committed to transparency about the clinical profile of baricitinib 2 mg in patients with moderate-to-severe AD, including its safety and tolerability.

Atopic Dermatitis is a heterogenous disease. As such, Dermatologists need more options available to connect the appropriate treatment to the appropriate patient. With so few treatments approved, there is room for more treatment options to help patients with a range of AD symptoms. ICER's assessment of potential novel treatment options for patients with moderate-to-severe AD has shed light on the variety of mechanisms and delivery systems that may soon be available with varying benefit and risk profiles. Lilly encourages ICER to acknowledge the need for treatment options for patients with atopic dermatitis in their final report for this disease state. Similarly, Lilly encourages ICER to recognize the clinical, economic, patient access, and equity implications of tactics such as non-evidence-based step therapy restrictions and rebate walls. It is essential for patients with atopic dermatitis to have access to a range of treatment options that best reflect the complex nature of their disease state, response to treatment, tolerance of side effects, and individual quality of life considerations.⁷

Dr. Feely is a full-time employee of Eli Lilly.

Kyle Hvidsten, MPH, Sanofi Vice President, Head of Global Health Economics and Value Assessment

Good morning to our colleagues from ICER and members of the CEPAC. My name is Kyle Hvidsten and I am the Head of the Sanofi Genzyme Health Economics and Value Assessment Group. I am joined by my colleague Dr Ana Rossi who is a Dermatologist and a member of the Sanofi Genzyme Medical Organization. We are both pleased to participate in today's discussion.

We first engaged with ICER in 2017 during their review of dupilumab for moderate to severe atopic dermatitis (AD). At that time, ICER established a range of value-based prices. Independently of this process, Sanofi Genzyme, in collaboration with Regeneron, and taking into consideration patient needs, determined dupilumab's price according to Sanofi's Pricing Policy; the resulting price happened to fall within ICER's range.

I'd like to note that a company's pricing decision rarely aligns so well with ICER's recommendation. We feel that this demonstrates how we follow our stated principles for responsible pricing and our commitment to achieving affordable access for patients who need our medicines. Dupilumab's price was viewed by some analysts as "lower than it should have been" based on its transformative value.

Despite how well dupilumab's price aligned with ICER's recommendation, our discussions with payers have been dominated by rebates. This situation, which continues to exist, is based on a set of mixed incentives where companies are encouraged to set prices to enable substantial rebates. As stated in our Policy, we establish a clear rationale for our launch prices that includes a holistic assessment of our medicine's value and affordable access for patients.

Since dupilumab's launch we have only made modest and predictable price increases in line with our Policy. This is reflected in the fact that dupilumab, or any other Sanofi medicine, has never been included in ICER's annual list of products that have taken "unsubstantiated price increases."

ICER's 2017 review noted several important questions that could not be answered at that time. Recognizing that managing AD requires long-term treatment, we shared ICER's desire to learn more about this important medicine and initiated many studies to understand the difference it is making in the lives of patients. This included several independent registries and the largest pediatric registry in moderate to severe AD.

Our evaluation of long-term data has established that dupilumab is not an immunosuppressant. Pooled results of clinical trials including adults, adolescents and children have demonstrated that patients treated with dupilumab have lower rates of infections, serious infections, and herpetic infections compared to placebo. Dupilumab is also associated with reduced rates and duration of "all cause" and "AD-related" hospitalizations.

Additionally, a three-year open label extension study demonstrated dupilumab's favorable safety and sustained efficacy. Safety data from this study were consistent with one-year trials and the rate of infections at three years was even lower than at one year. Furthermore, the signs and symptoms of AD showed sustained improvements over three years.

As we all know, no medicine will help patients suffering from a chronic condition like AD if they do not take it consistently. Analyses of healthcare data have shown a very high rate of persistency with dupilumab over twelve months and an independent registry showed dupilumab's persistency to be over 80% after 2 years of treatment. We are encouraged by these findings as they suggest that patients who persist are probably receiving meaningful value from their treatment and thereby managing their chronic disease.

We appreciate that ICER has taken a holistic approach to its comparison of clinical effectiveness where all forms of evidence were considered. Dupilumab is the only systemic therapy with established long-term safety and effectiveness data. We appreciate how ICER acknowledged that unanswered questions from the 2017 review have been addressed with long-term evidence.

Thank you again for the opportunity to participate in today's meeting and in the important process that began last December. Both Dr Rossi and I look forward to answering your questions.

Kyle is a full-time employee of Sanofi.

Ahmad Naim, MD, Incyte Vice President, Medical Affairs

As the manufacturer of ruxolitinib cream, Incyte Corporation appreciated the opportunity to provide oral comment at the public meeting held on July 23, 2021.

We are summarizing our oral statements and sharing our feedback on ICER's comparative clinical evaluation and assessment of ruxolitinib cream vs emollients in mild to moderate atopic dermatitis.

TrueAD 1 and 2 (Phase 3) studies of ruxolitinib cream were designed with input from clinical experts to reflect real world clinical management of AD patients. Over 90% of patients enrolled had prior experience with AD topical and/or systemic treatment and were inadequately controlled at the time of enrollment. Results from these Phase 3 studies have demonstrated superior clinical efficacy compared to vehicle (topical emollients):

- Significantly more patients treated with either ruxolitinib cream regimen achieved the
 primary endpoint of Investigator Global Assessment (IGA) treatment success at week 8
 (44.7% and 52.6% for 0.75% and 1.5% ruxolitinib cream, respectively) versus vehicle (11.5%;
 all p < 0.0001).
- Eczema Area and Severity Index (EASI) 75 (75% improvement in EASI score from baseline) at week 8 was achieved by 53.8% and 62.0% of patients who applied 0.75% ruxolitinib cream and 1.5% ruxolitinib cream, respectively, versus 19.7% on vehicle (all p < 0.0001).
- Statistically significant itch reduction was observed within approximately 12 hours of first ruxolitinib cream application (mean change from baseline: –0.4 and –0.5 for 0.75% ruxolitinib and 1.5% ruxolitinib) versus vehicle (–0.1; all p < 0.02). At week 8, more patients who applied ruxolitinib cream achieved a four-point improvement from baseline on the Itch Numeric Rating Scale (Itch NRS4) (41.5% and 51.5% for 0.75% ruxolitinib cream and 1.5% ruxolitinib cream, respectively) versus vehicle (15.8%; all p < 0.0001).
- Ruxolitinib cream was well-tolerated as demonstrated with <1% of patients reporting application site burning and less than 5% reporting TEAEs.
- No adverse events indicative of systemic activity of ruxolitinib cream were observed and no ruxolitinib cream-related serious adverse events were reported.

Ruxolitinib cream was purposefully designed to be a topical JAK inhibitor from its inception, acting locally to reduce systemic absorption. Published pharmacokinetics of Phase 3 studies have shown that plasma ruxolitinib concentrations after treatment with topical ruxolitinib cream (mean bioavailability of 6.2-7.7%) is not expected to lead to systemic plasma concentrations that may be

associated with adverse effects commonly associated with oral JAK inhibitors. The AE profile observed in Phase 3 studies were consistent with negligible systemic absorption.

In June 2021, the Food and Drug Administration (FDA) extended its review of ruxolitinib cream to allow time to review additional analyses of previously submitted data. Ruxolitinib cream was well tolerated in clinical trials. Specifically, clinically meaningful trends in hematologic parameters were not observed.

Based on the aforementioned results and characteristics, we request ICER consider ruxolitinib cream as a novel topical JAK inhibitor and review it separately from oral JAK inhibitors.

We believe ruxolitinib cream provides a beneficial treatment option for patients suffering from mild to moderate atopic dermatitis. In closing, ruxolitinib cream has demonstrated superior evidence against topical emollients with high certainty of substantial net health benefit.

Dr. Naim is a full-time employee of Incyte.

I. Conflict of Interest Disclosures

Tables I1 through I3 contain conflict of interest (COI) disclosures for all participants at the July 23, 2021, Public meeting of the New England CEPAC.

Table I1. ICER Staff and Consultants and COI Disclosures

ICER Staff and Co	onsultants
Foluso Agboola, MBBS, MPH, Vice President of Research, ICER*	Serina Herron-Smith , BA, Senior Research Assistant, Evidence Synthesis, ICER*
Steven J. Atlas, MD, MPH, Associate Professor of Medicine, Harvard Medical School, Director, Practice Based Research & Quality Improvement, Division of General Internal Medicine, MGH*	Maggie Houle, BS, Program and Event Coordinator, ICER*
Elizabeth Brouwer, PhD, MPH, Research Scientist, The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, Department of Pharmacy, University of Washington*	Emily Nhan, BA, Research Assistant, ICER*
Jon D. Campbell, PhD, MS, Senior Vice President for Health Economics, ICER*	Steven D. Pearson, MD, MSc, President, ICER*
Josh J. Carlson, PhD, MPH, Associate Professor, The CHOICE Institute, Department of Pharmacy, University of Washington*	David M. Rind, MD, MSc, Chief Medical Officer, ICER*
Yilin Chen, MPH, PhD Student, The CHOICE Institute, Department of Pharmacy, University of Washington*	Liis Shea, MA, Program Director, ICER*
Ryan N. Hansen, PharmD, PhD, Associate Professor, The CHOICE Institute, Department of Pharmacy, University of Washington*	

^{*}No conflicts of interest to disclose, defined as individual health care stock ownership (including anyone in the member's household) in any company with a product under study, including comparators, at the meeting in excess of \$10,000 during the previous year, or any health care consultancy income from the manufacturer of the product or comparators being evaluated.

Table 12. New England CEPAC Panel Member Participants and COI Disclosures

Participating	Members of CEPAC
Robert Aseltine, PhD, Professor and Chair, Division of Behavioral Sciences and Community Health, UCONN Health*	Kimberly Lenz , PharmD, FAMCP, Director of Clinical and Operational Pharmacy, University of Massachusetts Medical School*
Kelly Buckland, MS, Executive Director, National Council on Independent Living*	Greg Low , RPh, PhD, Director, MGPA Pharmacy Quality and Utilization Program, Massachusetts General Hospital*
Austin Frakt, PhD, Director, Partnered Evidence- Based Policy Resource Center, VA Boston Healthcare System*	Eleftherios Mylonakis, MD, PhD, FIDSA, Professor of Infectious Disease, Chief of Infectious Disease, Brown University*
Christopher Jones, PhD, MSc, Director, Ventures Investments, UVM Health Network*	Leslie Ochs, PharmD, PhD, MSPH, Associate Professor and Department Chair, University of New England School of Pharmacy*
Rebecca Kirch, JD, Executive Vice President of Policy and programs, National Patient Advocate Foundation*	Jeanne Ryer, MSc, EdD, Director, NH Citizens Health Initiative*
Stephen Kogut, PhD, MBA, RPh, Professor, University of Rhode Island College of Pharmacy*	Jason L. Schwartz, PhD, Associate Professor of Health Policy, Yale School of Public Health*
Donald M. Kreis, MS, JD, Consumer Advocate, New Hampshire Office of the Consumer Advocate*	Jason Wasfy, MD, MPhil, Medical Director, Mass General Physician's Organization
Tara Lavelle, PhD, Assistant Professor, Tufts Medical Center*	Albert Whitaker, MA, MPH, Director of Community Impact, American Heart Association*

^{*}No conflicts of interest to disclose, defined as individual health care stock ownership (including anyone in the member's household) in any company with a product under study, including comparators, at the meeting in excess of \$10,000 during the previous year, or any health care consultancy income from the manufacturer of the product or comparators being evaluated.

¹Dr. Wasfy did not participate as a voting member of the New England CEPAC during this meeting.

Table 13. Policy Roundtable Participants and COI Disclosures

Policy Roundtable Participant	Conflict of Interest
Samantha Bittner, Patient Ambassador, National Eczema Association	No financial conflicts to disclose.
Thomas Brownlie, MS, Senior Director, Pfizer Inc.	Thomas is a full-time employee of Pfizer Inc.
Jeffrey Casberg, MS, RPh, Vice President of Pharmacy, IPD Analytics	Jeffrey is a full-time employee of IPD Analytics.
Michele Guadalupe, MPH, Associate Director of Advocacy and Access, National Eczema Association	The National Eczema Association has received grants and sponsorship awards from a variety of industry partners, including Pfizer, AbbVie, Sanofi, Regeneron, Incyte, and LEO Pharma.
Catherine Herren, PharmD, MS, Advisor, Value Development, Eli Lilly, and Company	Dr. Catherine Herren is a full-time employee of Eli Lilly and Company.
Kyle Hvidsten, MPH, Vice President, Head of Global Health Economics and Value Assessment, Sanofi	Kyle is a full-time employee of Sanofi.
Erik Schindler, PharmD, Director, Emerging Therapeutics and Outcome-Based Contracting, UnitedHealthcare Pharmacy	Dr. Erik Schindler is a full-time employee of UnitedHealthcare Pharmacy.
Elaine Siegfried, MD, Professor of Pediatrics and Dermatology, Saint Louis University School of Medicine	Dr. Elaine Siegfried has received consulting fees and honoraria from industry partners, including Incyte, Regeneron, Sanofi, LEO Pharma, Pfizer, and AbbVie for participation in clinical trials as a PI. She also received funding from Pfizer to support a two-year fellowship position at Saint Louis University.
Jonathan Silverberg, MD, PhD, MPH, Associate Professor, George Washington University School of Medicine and Health Sciences	Dr. Jonathan Silverberg has received funding from industry partners, including AbbVie, Eli Lilly, Incyte, LEO Pharma, Regeneron, and Sanofi.

References

- 1. Sherry H Yu HA, Phyllis Zee, Jonathan I Silverberg. . Burden of Sleep and Fatigue in US Adults With Atopic Dermatitis. *Dermatitis*. 2016;27(2):50-58.
- 2. Ramirez FD CS, Langan SM, Prather AA, McCulloch CE, Kidd SA, Cabana MD, Chren MM, Abuabara K. Association of Atopic Dermatitis With Sleep Quality in Children. *JAMA Pediatr.* 2019;173(5)::e190025.
- 3. Silverberg J. Comorbidities and the impact of atopic dermatitis. *Ann Allergy Asthma Immunol.* 2019;123(2):144-151.
- 4. Holm JG AT, Clausen ML, Thomsen SF. Quality of life and disease severity in patients with atopic dermatitis. *J Eur Acad Dermatol Venereol.* 2016;30(10):1760-1767.
- 5. Eckert L GS, Amand C, Gadkari A, Mahajan P, Gelfand JM. Impact of atopic dermatitis on health-related quality of life and productivity in adults in the United States: An analysis using the National Health and Wellness Survey. *J Am Acad Dermatol.* 2017;77(2):274-279.
- 6. Ramirez FD CS, Langan SM, Prather AA, McCulloch CE, Kidd SA, Cabana MD, Chren MM, Abuabara K. Assessment of Sleep Disturbances and Exhaustion in Mothers of Children With Atopic Dermatitis. *JAMA Dermatol.* 2019;155(5):556-563.
- 7. Shaw TE CG, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. *J Invest Dermtol.* 2010;131(1):67-73.
- 8. McKenzie C SJ. The prevalence and persistence of atopic dermatitis in urban United States children. *Ann Allergy Asthma Immunol.* 2019;123(2):173-178.e171.
- 9. Silverberg JI HJ. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. *J Allergy Clin Immunol.* 2013;132(5):1132-1138.
- 10. Silverberg JI GN, Paller AS, Fishbein AB, Zee PC. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. *J Invest Dermatol*. 2014;135(1):56-66.
- 11. D.R. Bickers HWL, D. Margolis, et al. The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. *J Am Acad Dermatol.* 2006;55:490-500.
- 12. Drucker AM WA, Li WQ, Sevetson E, Block JK, Qureshi AA. The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. *J Invest Dermatol.* 2017;137(1):26-30.
- 13. Brennan Z. Series of JAK inhibitor delays may signal an upcoming FDA adcomm. *Endpoints News.* 2021.
- 14. LeoPharma. Update on U.S. FDA review of LEO Pharma's Biologics License Application for tralokinumab for the treatment of adults with moderate-to-severe atopic dermatitis. 2021.
- 15. Incyte Announces U.S. FDA Has Extended the New Drug Application Review Period for Ruxolitinib Cream for the Treatment of Atopic Dermatitis [press release]. Business Wire2021.
- 16. Beck LT, D. Deleuran, M. Blauvelt, A. Bissonnette, R. de Bruin-Weller, M. Hide, M. Sher, L. Hussain, I. Chen, Z. Khokhar, FA. Beazley, B. Ruddy, M. Patel, N. Graham, NMH. Ardeleanu, M. Shumel. Dupilumab Provides Favorable Safety and Sustained Efficacy for up to 3 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. *American Journal of Clinical Dermatology* 2020.

- 17. Cheng B, Silverberg, JI. Association of pediatric atopic dermatitis and psoriasis with school absenteeism and parental work absenteeism: A cross-sectional United States population-based study. *Journal of the American Academy of Dermatology*. 2021.
- 18. Boguniewicz M LD. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. *Immunol Rev.* 2011;242(1):233-246.
- 19. Guttman-Yassky E WA, Ahluwalia J,Ong PY, Eichenfield LF. . Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017;36(3):100-103.
- 20. Silverberg JI SE. Associations of childhood eczema severity: a US population-based study. *Dermatitis.* 2014;25(3):107-114.
- 21. Mortz CG AK, Dellgren C, Barington T, Bindslev-Jensen C. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities. *Allergy*. 2015;70(7):836-845.
- 22. Silverberg JI MD, Boguniewicz M, Fonacier L, Grayson MH, Ong PY, Chiesa Fuxench ZC, Simpson EL, Gelfand JM. . Distribution of atopic dermatitis lesions in United States adults. *J Eur Acad Dermatol Venereol.* 2019;33(7):1341-1348.
- 23. Ballardini N KI, Söderhäll C, Lilja G, Wickman M, Wahlgren CF. Eczema severity in preadolescent children and its relation to sex, filaggrin mutations, asthma, rhinitis, aggravating factors and topical treatment: a report from the BAMSE birth cohort. *Br J Dermatol.* 2013;168(3):588-594.
- 24. Simpson EL ea. Association of Inadequately Controlled Disease and Disease Severity With Patient-Reported Disease Burden in Adults With Atopic Dermatitis. *JAMA Dermatol.* 2018.
- 25. Jr. ABF. Atopic dermatitis: the relationship to temperature and seasonality in the United States. *International Journal of Dermatology.* 2019.
- 26. Weidinger S, Novak N. Atopic dermatitis. *Lancet (London, England)*. 2016;387(10023):1109-1122.
- 27. Sidbury R, Davis DM, Cohen DE, et al. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. *J Am Acad Dermatol.* 2014;71(2):327-349.
- 28. Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. *J Am Acad Dermatol.* 2014;71(1):116-132.
- 29. Gooderham MJ, Hong HC, Eshtiaghi P, Papp KA. Dupilumab: A review of its use in the treatment of atopic dermatitis. *J Am Acad Dermatol*. 2018;78(3 Suppl 1):S28-s36.
- 30. Moyle M, Cevikbas F, Harden JL, Guttman-Yassky E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. *Experimental dermatology*. 2019;28(7):756-768.
- 31. Ghamrawi R, Bell KA, Balogh EA, Strowd LC, Feldman SR. Current and emerging biologics for the treatment of pediatric atopic dermatitis. *Expert opinion on biological therapy.* 2020:1-11.
- 32. Hamann CR, Thyssen JP. Monoclonal antibodies against interleukin 13 and interleukin 31RA in development for atopic dermatitis. *J Am Acad Dermatol.* 2018;78(3 Suppl 1):S37-s42.
- 33. He H, Guttman-Yassky E. JAK Inhibitors for Atopic Dermatitis: An Update. *American journal of clinical dermatology*. 2019;20(2):181-192.
- 34. Allergy & Asthma Association AaAFoA, Global Parents for Eczema Research, International Topical Steroid Awareness Network, National Eczema Association. More Than Skin Deep Report. 2020.
- 35. Simpson EL, Sinclair R, Forman S, et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): a multicentre, double-

- blind, randomised, placebo-controlled, phase 3 trial. Lancet (London, England). 2020;396(10246):255-266.
- 36. Silverberg JI, Simpson EL, Thyssen JP, et al. Efficacy and Safety of Abrocitinib in Patients With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatology. 2020;156(8):863-873.
- 37. Bieber T, Simpson EL, Silverberg JI, et al. Abrocitinib versus Placebo or Dupilumab for Atopic Dermatitis. New England Journal of Medicine. 2021;384(12):1101-1112.
- 38. Pfizer. Abrocitinib Data Request for ICER Assessment of "JAK Inhibitors and Monoclonal Antibodies for the Treatment of Atopic Dermatitis" 2021.
- 39. Pfizer. Data on File2020.
- 40. Gooderham MJ, Forman SB, Bissonnette R, et al. Efficacy and Safety of Oral Janus Kinase 1 Inhibitor Abrocitinib for Patients With Atopic Dermatitis: a Phase 2 Randomized Clinical Trial. *JAMA dermatology.* 2019;155(12):1371-1379.
- 41. Eichenfield L, Flohr C, Sidbury R. Efficacy and Safety of Abrocitinib in Adolescent Patients With Moderate-to-Severe Atopic Dermatitis (AD): Results From the Phase 3 JADE TEEN study. Paper presented at: American Academy of Allergy Asthma & Immunology Virtual Annual Meeting2021.
- 42. Simpson EL, Lacour JP, Spelman L, et al. Baricitinib in Patients with Moderate-to-Severe Atopic Dermatitis and Inadequate Response to Topical Corticosteroids: results from Two Randomised Monotherapy Phase 3 Trials. British journal of dermatology. 2020.
- 43. EADV 2020: Lilly and Incyte Showcase New Data for Baricitinib for the Treatment of Moderate to Severe Atopic Dermatitis [press release]. 2020.
- 44. Lilly E. Data on File2021.
- 45. Simpson EL, Forman S, Silverberg JI, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis: Results from a randomized monotherapy phase 3 trial in the United States and Canada (BREEZE-AD5). Journal of the American Academy of Dermatology. 2021.
- 46. Reich K, Kabashima K, Peris K, et al. Efficacy and Safety of Baricitinib Combined With Topical Corticosteroids for Treatment of Moderate to Severe Atopic Dermatitis: a Randomized Clinical Trial. JAMA dermatology. 2020.
- 47. Clinicaltrials.gov. A Study of Baricitinib (LY3009104) in Combination With Topical Corticosteroids in Adults With Moderate to Severe Atopic Dermatitis (BREEZE-AD7). Published 2020. Accessed.
- 48. Guttman-Yassky E, Silverberg JI, Nemoto O, et al. Baricitinib in adult patients with moderate-tosevere atopic dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. Journal of the American Academy of Dermatology. 2019;80(4):913-921.e919.
- 49. Clinicaltrials.gov. A Study of Baricitinib (LY3009104) in Adult Participants With Moderate to Severe Atopic Dermatitis (BREEZE-AD5). Published 2021. Accessed.
- 50. Blauvelt A, e Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-tosevere atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;389(10086):2287-2303.
- 51. Simpson EL, Bieber T, Guttman-Yassky E, et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. New England Journal of Medicine. 2016;375(24):2335-2348.
- 52. Simpson EL, Paller AS, Siegfried EC, et al. Efficacy and Safety of Dupilumab in Adolescents With Uncontrolled Moderate to Severe Atopic Dermatitis: a Phase 3 Randomized Clinical Trial. JAMA dermatology. 2020;156(1):44-56.

- Paller AS, Siegfried EC, Thaci D, et al. Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: a randomized, double-blinded, placebo-controlled phase 3 trial. *Journal of the American Academy of Dermatology.* 2020.
- 54. Worm M, Simpson EL, Thaci D, et al. Efficacy and Safety of Multiple Dupilumab Dose Regimens After Initial Successful Treatment in Patients With Atopic Dermatitis: a Randomized Clinical Trial. *JAMA dermatology.* 2020;156(2):131-143.
- 55. Sanofi-Regeneron. Sanofi-Regeneron Academic-in-Confidence Data Submission Table 2.1.2.1.2021.
- 56. Thaçi D, Simpson EL, Beck LA, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. *The Lancet*. 2016;387(10013):40-52.
- 57. Simpson EL, Gadkari A, Worm M, et al. Dupilumab therapy provides clinically meaningful improvement in patient-reported outcomes (PROs): A phase Ilb, randomized, placebocontrolled, clinical trial in adult patients with moderate to severe atopic dermatitis (AD). *Journal of the American Academy of Dermatology.* 2016;75(3):506-515.
- 58. Cork M, Thaçi D, Davis JD, et al. Pharmacokinetics, safety and efficacy of dupilumab in a pediatric population with moderate-to-severe atopic dermatitis: Results from an open-label phase 2A trial. *Pediatric Dermatology*. 2017;34:S32.
- 59. Clinicaltrials.gov. A Study to Determine the Safety and Tolerability of Dupilumab (REGN668/SAR231893) in Patients Aged ≥6 to <18 Years With Atopic Dermatitis (Eczema). Published 2020. Accessed.
- 60. Cork MJ, Thaci D, Eichenfield LF, et al. Dupilumab provides favourable long-term safety and efficacy in children aged >= 6 to < 12 years with uncontrolled severe atopic dermatitis: results from an open-label phase IIa study and subsequent phase III open-label extension study. *British journal of dermatology.* 2020.
- 61. Blauvelt A, Guttman-Yassky E, Paller A. Efficacy and Safety of Dupilumab for up to 1 Year in a Phase 3 Open-Label Extension (OLE) Trial (LIBERTY AD PED-OLE) in Adolescents With Moderate-to-Severe Atopic Dermatitis (AD). Paper presented at: American Academy of Dermatology Association Virtual Meeting Experience2021.
- 62. Cork M, Thaci D, Eichenfield L. Long-Term Efficacy and Safety Data for Dupilumab in a Phase 3, Open-Label Extension Trial (LIBERTY AD PED-OLE) in Patients Aged ≥ 6 to < 12 Years With Uncontrolled, Moderate-to-Severe Atopic Dermatitis (AD). Paper presented at: American Academy of Dermatology Association Virtual Meeting Experience2021.
- 63. Wollenberg A, Blauvelt A, Guttman-Yassky E, et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). *British journal of dermatology.* 2020.
- 64. Silverberg JI, Toth D, Bieber T, et al. Tralokinumab plus topical corticosteroids for the treatment of moderate-to-severe atopic dermatitis: results from the double-blind, randomized, multicentre, placebo-controlled phase III ECZTRA 3 trial. *British journal of dermatology.* 2020.
- 65. LeoPharma. Data on File2021.
- 66. LEO Pharma Presents Data for Tralokinumab on Pooled Safety, S. aureus Colonization Reduction and Impact on Vaccine Response Rates at the 29th Annual European Academy of Dermatology and Venereology (EADV) Virtual Congress [press release]. 2020.
- 67. Wiseman M, Armstrong AW, Soung J. Efficacy and safety of tralokinumab monotherapy in North American adult patients with moderate-to-severe atopic dermatitis: A subanalysis of the ECZTRA

- 2 trial. Paper presented at: American Academy of Dermatology Association Virtual Meeting Experience2021.
- 68. Blauvelt A, Wollenberg A, Pink A, Worm M. Assessing Long-term Maintenance of Efficacy With Tralokinumab Monotherapy in Patients With Moderate-to-severe Atopic Dermatitis: Combined Results From Two Phase 3, Randomized, Double-blind, Placebo-controlled Trials (ECZTRA 1 and 2). Paper presented at: American Academy of Dermatology Association Virtual Meeting Experience2021.
- 69. Guttman-Yassky E, Thaci D, Pangan AL, et al. Upadacitinib in adults with moderate to severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. *Journal of allergy and clinical immunology.* 2020;145(3):877-884.
- 70. AbbVie. Data on File. 2021.
- 71. Simpson EL, Warren RB, Eichenfield LF. Rapid Skin Improvement With Upadacitinib With or Without Topical Corticosteroids (TCS) in Moderate-to-Severe Atopic Dermatitis (AD): Results From 3 Phase 3 Studies (Measure Up 1, Measure Up 2, and AD Up). Paper presented at: American Academy of Dermatology Association Virtual Meeting Experience2021.
- 72. Kristian Reich MdB-W, Mette Sondergaard Deleuran, Lisa Beck, Kim A. Papp,, Thomas Werfel NK, Saleem Farooqui, Pinaki Biswas, Ricardo Rojo, Marco Dibonaventura,, Claire Clibborn UK. Abrocitinib Efficacy and Safety as Monotherapy Over 48 Weeks: Results From a Long-Term Extension Study. Paper presented at: European Academy of Dermatology and Venereology Virtual Congress2020.
- 73. Papp J. Long-Term Safety and Disease Control With Ruxolitinib Cream in Atopic Dermatitis: Results From Two Phase 3 Studies. Revolutionizing Atopic Dermatitis (RAD) Virtual Conference; 2021.
- 74. EL S. Long-Term Safety and Disease Control With Ruxolitinib Cream in Patients With More Severe Atopic Dermatitis: Pooled Results From Two Phase 3 Studies. Revolutionizing Atopid Dermatitis (RAD) Virtual Conference; 2021.
- 75. Simpson EL. Efficacy and Safety of Abrocitinib in Adolescent Patients With Moderate-to-Severe Atopic Dermatitis: Stratified Analysis Across 3 Clinical Trials. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- 76. Reich J. Long-Term Management of Moderate-to-Severe Atopic Dermatitis With Abrocitinib: A Phase 3 Extension Study (JADE EXTEND). Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- 77. Eichenfield L. Efficacy and Safety of Abrocitinib in Adolescents With Moderate-to-Severe Atopic Dermatitis From the JADE Clinical Trial Program. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- 78. Blauvelt A. Long-term Improvements Observed in Tralokinumab-treated Patients With Moderate-to-severe Atopic Dermatitis: An ECZTEND Interim Analysis. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- 79. Paller A. Efficacy and Safety of Upadacitinib in Adult and Adolescent Subgroups With Moderate-to-Severe Atopic Dermatitis: An Analysis of the Measure Up 1, Measure Up 2, and AD Up Phase 3 Clinical Trials. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference 2021.
- 80. Guttman-Yassky E, Teixeira HD, Simpson EL, et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. *The Lancet (British edition)*. 2021;397(10290):2151-2168.

- 81. Reich K, Teixeira HD, de Bruin-Weller M, et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet (British edition). 2021;397(10290):2169-2181.
- 82. Simpson E. Long-term Efficacy of Baricitinib 2-mg for the Treatment of Atopic Dermatitis in North America. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference 2021.
- 83. Blauvelt A, Teixeira HD, Simpson EL, et al. Efficacy and Safety of Upadacitinib vs Dupilumab in Adults With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatology. 2021.
- 84. Clinicaltrials.gov. JAK1 Inhibitor With Medicated Topical Therapy in Adolescents With Atopic Dermatitis (JADE TEEN). Published 2021. Accessed 2021.
- 85. Simpson E, Lee M, Brar K, et al. Disease Characteristics and Burden in Patients With Atopic Dermatitis: Insights From Two Phase 3 Studies of Ruxolitinib Cream. Journal of allergy and clinical immunology. 2021;147(2):AB35-AB35.
- 86. Kim BS, Sun K, Papp K, Venturanza M, Nasir A, Kuligowski ME. Effects of ruxolitinib cream on pruritus and quality of life in atopic dermatitis: Results from a phase 2, randomized, doseranging, vehicle- and active-controlled study. Journal of the American Academy of Dermatology. 2020;82(6):1305-1313.
- 87. Kim BS, Howell MD, Sun K, Papp K, Nasir A, Kuligowski ME. Treatment of atopic dermatitis with ruxolitinib cream (JAK1/JAK2 inhibitor) or triamcinolone cream. Journal of allergy and clinical immunology. 2020;145(2):572-582.
- 88. Papp K, Szepietowski JC. Efficacy and Safety of Ruxolitinib Cream for the Treatment of Atopic Dermatitis: Results From Two Phase 3, Randomized Double-Blind Studies. 2nd Annual Revolutionizing Atopic Dermatitis Conference; 2020; Chicago, IL.
- 89. Pooled Results from Incyte's TRuE-AD1 and TRuE-AD2 Atopic Dermatitis Studies of Ruxolitinib Cream Show Clinically Meaningful Improvements in Patient- Reported Quality of Life Assessments [press release]. Incyte.com: Incyte2020.
- 90. Eichenfield L, Call R, Forsha D, et al. Long-term safety of crisaborole ointment in children, adolescents, and adults with mild to moderate atopic dermatitis. Pediatric dermatology Conference: 13th world congress of pediatric dermatology United states. 2017;34:S32-S33.
- 91. Eichenfield LF, Yosipovitch G, Stein Gold LF, et al. Improvement in disease severity and pruritus outcomes with crisaborole ointment, 2%, by baseline atopic dermatitis severity in children and adolescents with mild-to-moderate atopic dermatitis. Pediatric dermatology. 2020.
- 92. Schlessinger J, Shepard JS, Gower R, et al. Safety, Effectiveness, and Pharmacokinetics of Crisaborole in Infants Aged 3 to < 24 Months with Mild-to-Moderate Atopic Dermatitis: A Phase IV Open-Label Study (CrisADe CARE 1). American journal of clinical dermatology. 2020;21(2):275-284.
- 93. Simpson EL, Paller AS, Boguniewicz M, et al. Crisaborole Ointment Improves Quality of Life of Patients with Mild to Moderate Atopic Dermatitis and Their Families. Dermatology and therapy. 2018;8(4):605-619.
- 94. Yosipovitch G, Gold LF, Lebwohl MG, Silverberg JI, Tallman AM, Zane LT. Early Relief of Pruritus in Atopic Dermatitis with Crisaborole Ointment, A Non-steroidal, Phosphodiesterase 4 Inhibitor. Acta Derm Venereol. 2018;98(5):484-489.
- 95. Paller ASMSMD, Tom WLMD, Lebwohl MGMD, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic

- dermatitis (AD) in children and adults. Journal of the American Academy of Dermatology. 2016;75(3):494-503.e496.
- 96. Paller AS. Crisaborole ointment improves global atopic dermatitis severity: pooled results from two phase 3 clinical trials. Journal of investigative dermatology. 2018; Conference: 47th Annual Meeting of the European Society for Dermatological Research, ESDR 2017. Austria. 137(10 Supplement 2):S193.
- 97. Papp K, Szepietowski JC, Kircik L, et al. Efficacy and Safety of Ruxolitinib Cream for the Treatment of Atopic Dermatitis: Results From Two Phase 3, Randomized, Double-Blind Studies. Journal of the American Academy of Dermatology. 2021.
- 98. Blauvelt A, Eichenfield L. Efficacy of Ruxolitinib Cream Among Patients With Atopic Dermatitis Based on Previous Medication History: Pooled Results From Two Phase 3 Studies. Paper presented at: American Academy of Dermatology Virtual Meeting Experience2021.
- 99. EL. S, Augustin M, Thaci D. Patient-Reported Outcomes of Ruxolitinib Cream for the Treatment of Atopic Dermatitis: Pooled Results From Two Phase 3 Studies. Paper presented at: American Academy of Dermatology Virtual Meeting Experience 2021.
- 100. L SE, Kircik L, Blauvelt A. Efficacy of Ruxolitinib Cream in Patients With Atopic Dermatitis Who Demonstrated Partial Responses: Pooled Analysis From Two Randomized Phase 3 Studies. Paper presented at: American Academy of Dermatology Virtual Experience2021.
- 101. Papp K, Szepietowski JC. Efficacy of Ruxolitinib Cream for the Treatment of Atopic Dermatitis by Baseline Patient Demographics: Pooled Subgroup Analysis From Two Randomized Phase 3 Studies. American Academy of Dermatology Virtual Meeting Experience; 2021.
- 102. Simpson EL, Kircik L, Blauvelt A. Effects of Ruxolitinib Cream in Patients With Atopic Dermatitis With Baseline Body Surface Area ≥10% and Eczema Area and Severity Index Score ≥16: Pooled Results From Two Phase 3 Studies. Paper presented at: American Academy of Dermatology Virtual Meeting Experience2021.
- 103. Papp K, Szepietowski JC, Kircik L. Efficacy of Ruxolitinib Cream for the Treatment of Atopic Dermatitis by Baseline Clinical Characteristics: Pooled Subgroup Analysis From Two Randomized Phase 3 Studies. Paper presented at: American Academy of Dermatology Virtual Meeting Experience2021.
- 104. Basra MKA, Salek MS, Camilleri L, Sturkey R, Finlay AY. Determining the Minimal Clinically Important Difference and Responsiveness of the Dermatology Life Quality Index (DLQI): Further Data. Dermatology. 2015;230(1):27-33.
- 105. Charman CR, Venn AJ, Williams HC. The patient-oriented eczema measure: development and initial validation of a new tool for measuring atopic eczema severity from the patients' perspective. Arch Dermatol. 2004;140(12):1513-1519.
- 106. Silverberg JI, Thyssen JP, Simpson EL, et al. Impact of Oral Abrocitinib Monotherapy on Patient-Reported Symptoms and Quality of Life in Adolescents and Adults with Moderate-to-Severe Atopic Dermatitis: A Pooled Analysis of Patient-Reported Outcomes. American journal of clinical dermatology. 2021;22(4):541-554.
- Shi N. Abrocitinib in the Treatment of Moderate-to-Severe Atopic Dermatitis Refractory to 107. Dupilumab Treatment: An Analysis of JADE-EXTEND, a Phase 3 Long-Term Extension Study. Paper presented at: REvolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- Clinicaltrials.gov. A Study of Baricitinib (LY3009104) in Patients With Moderate to Severe Atopic 108. Dermatitis (BREEZE-AD1). U.S National Library of Medicine. Published 2018. Accessed.
- 109. Clinicaltrials.gov. Study of Baricitinib (LY3009104) in Patients With Moderate to Severe Atopic Dermatitis (BREEZE-AD2). Published 2018. Accessed.

- 110. Lilly E. Baricitinib Package Insert. 2018.
- 111. Abbvie. Upadacitinib Package Insert. 2019.
- 112. Beck LA, Thaci D, Deleuran M, et al. Dupilumab Provides Favorable Safety and Sustained Efficacy for up to 3 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. American journal of clinical dermatology. 2020;21(4):567-577.
- 113. Fu T KE, Linos E, et al. Eczema and sensitization to common allergens in the United States: a multiethnic, population-based study. Pediatric Dermatology. 2014.
- 114. Ashcroft DM, Chen LC, Garside R, Stein K, Williams HC. Topical pimecrolimus for eczema. Cochrane Database Syst Rev. 2007(4):Cd005500.
- 115. Buysse DJ, Yu L, Moul DE, et al. Development and validation of patient-reported outcome measures for sleep disturbance and sleep-related impairments. Sleep. 2010;33(6):781-792.
- Zimmermann M, Rind D, Chapman R, Kumar V, Kahn S, Carlson J. Economic Evaluation of 116. Dupilumab for Moderate-to-Severe Atopic Dermatitis: A Cost-Utility Analysis. Journal of drugs in dermatology: JDD. 2018;17(7):750-756.
- 117. Schmitt J, Langan S, Williams HC. What are the best outcome measurements for atopic eczema? A systematic review. Journal of Allergy and Clinical Immunology. 2007;120(6):1389-1398.
- 118. Arias E, Xu J. United States life tables, 2018. Hyattsville, MD: National Center for Health Statistics; 2020.
- 119. National Economic Accounts. 2018. https://www.bea.gov/national/#gdp. Accessed August 10,
- 120. Hanifin JT, M. Omoto, M. Cherill, R. Tofte, SJ. Graeber, M. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. EASI Evaluator Group. 2001.
- 121. Futamura ML, YA. Thomas, KS. Nankervis, H. Williams, HC. Simpson, EL. . A systematic review of Investigator Global Assessment (IGA) in atopic dermatitis (AD) trials: many options, no standards. Journal of the American Academy of Dermatology.
- 122. Yosipovitch G, Reaney M, Mastey V, et al. Peak Pruritus Numerical Rating Scale: psychometric validation and responder definition for assessing itch in moderate-to-severe atopic dermatitis. British journal of dermatology (1951). 2019;181(4):761-769.
- 123. Kunz BO, AP. Labrèze, L. Stalder, JF. Ring, J. Taïeb, A. . Clinical validation and guidelines for the SCORAD index: consensus report of the European Task Force on Atopic Dermatitis. 1997.
- 124. Barrett AH-P, J. Kragh, N. Evans, E. Gnanasakthy, A. . Patient-Reported Outcome Measures in Atopic Dermatitis and Chronic Hand Eczema in Adults. 2019.
- 125. Salek MJ, S. Brincat-Ruffini, LA. et al. . Clinical experience and psychometric properties of the Children's Dermatology Life Quality Index (CDLQI), 1995-2012. The British journal of dermatology. 2013.
- 126. Foley CT, N. Simpson, E. Teixeira, HD. Litcher-Kelly, L. Bodhani, A. . Development, and content validity of new patient-reported outcome questionnaires to assess the signs and symptoms and impact of atopic dermatitis: the Atopic Dermatitis Symptom Scale (ADerm-SS) and the Atopic Dermatitis Impact Scale (ADerm-IS). 2019.
- Dodington SB, MK. Finlay, AY. Salek, MS. . The Dermatitis Family Impact questionnaire: a review 127. of its measurement properties and clinical application. The British journal of dermatology. 2013.
- 128. Reilly MZ, AS. Dukes, EM. . The validity and reproducibility of a work productivity and activity impairment instrument. . Pharmacoeconomics. 1993.
- 129. Schneider LT, S. Lio, P. Boguniewicz, M. Beck, L. LeBovidge, J. Novak, N. Atopic dermatitis: A practice parameter update 2012. American Academy of Allergy, Asthma & Immunology. 2013.

- 130. Ting S, Elsada A, Hayre J, Powell J. *Dupilumab for treating moderate to severe atopic dermatitis : Technology appraisal guidance (TA534).* National Institute for Health and Care Excellence (NICE); 1 August 2018 2018.
- 131. Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. *Ann Intern Med.* 1997;126(5):376-380.
- 132. Higgins JP. Cochrane Collaboration Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. 2008.
- 133. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Int J Surg.* 2010;8(5):336-341.
- 134. Agency for Healthcare Research and Quality. U.S. Preventive Services Task Force Procedure Manual. Published 2008. Accessed.
- 135. Ollendorf D, Pearson, SD. ICER Evidence Rating Matrix: A User's Guide. https://icer-review.org/methodology/icers-methods/icer-evidence-ratingmatrix/. Published 2020. Updated January 31, 2020. Accessed.
- 136. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE Decision Support Unit Technical Support Documents. In: NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. London: National Institute for Health and Care Excellence (NICE) Copyright © 2014 National Institute for Health and Clinical Excellence, unless otherwise stated. All rights reserved.; 2014.
- 137. Cork MJ, Eckert L, Simpson EL, et al. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: analysis of pooled data from the randomized trials SOLO 1 and SOLO 2. *Journal of dermatological treatment*. 2020;31(6):606-614.
- 138. Silverberg JI, Thyssen JP, Fahrbach K, et al. Comparative efficacy and safety of systemic therapies used in moderate-to-severe atopic dermatitis: a systematic literature review and network meta-analysis. *Journal of the European Academy of Dermatology and Venereology*. 2021;n/a(n/a).
- 139. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. *Jama*. 2016;316(10):1093-1103.
- 140. Simpson EL, Sinclair R, Forman S, et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet (London, England)*. 2020;396(10246):255-266.
- 141. Silverberg JI, Simpson EL, Thyssen JP, et al. Efficacy and Safety of Abrocitinib in Patients with Moderate-to-Severe Atopic Dermatitis: a Randomized Clinical Trial. *JAMA dermatology.* 2020.
- 142. Thaçi D, Bieber T, Simpson EL, et al. A Phase 3 Study to Investigate the Efficacy and Safety of Abrocitinib and Dupilumab in Comparison With Placebo in Adults With Moderate-to-Severe Atopic Dermatitis.
- 143. Thaci D, L. Simpson E D, M K, et al. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2). *Journal of Dermatological Science*.94(2):266-275.
- 144. Wollenberg A, Boguniewicz M, Travers J, et al. Efficacy of Baricitinib in Patients with Atopic Dermatitis and Atopic Comorbidities: Results of Pooled Data from 2 Phase 3 Monotherapy Randomized, Double-Blind, Placebo-Controlled 16-week Trials (BREEZE-AD1 and BREEZE-AD2). *Journal of Allergy and Clinical Immunology*. 2020;145(2):AB190.

- 145. Simpson EL, Forman S, Silverberg JI, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis: Results from a randomized monotherapy Phase 3 trial in the United States and Canada (BREEZE-AD5). *Journal of the American Academy of Dermatology*. 2021.
- 146. Pickard AS, Law EH, Jiang R, et al. United States Valuation of EQ-5D-5L Health States Using an International Protocol. *Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research.* 2019;22(8):931-941.
- 147. Measures of Central Tendency for Wage Data. In. United States Social Security Administration 2019.
- 148. Health iW. Mometasone furoate: Average wholesale price. . IBM Micromedex DRUGDEX 2021.
- 149. Kuznik A, Bégo-Le-Bagousse G, Eckert L, et al. Economic evaluation of dupilumab for the treatment of moderate-to-severe atopic dermatitis in adults. *Dermatology and therapy*. 2017;7(4):493-505.
- 150. Costanzo A, Furneri G, Bitonti R, Pedone MP, Fanelli F, Di Turi R. Cost-effectiveness analysis of dupilumab for the treatment of severe atopic dermatitis in adults in Italy. *Global & Regional Health Technology Assessment*. 2020;7(1):57-65.
- 151. Capital Markets Day: Epidemiology 2019.
- 152. Dupixent® (dupilumab) Phase 3 data show significant improvement in severe atopic dermatitis for children aged 6 to 11 years [press release]. 2020.
- 153. Institute for Clinical and Economic Review. 2020-2023 Value Assessment Framework. https://icer-review.org/wp-content/uploads/2019/05/ICER_2020_2023_VAF_013120-4.pdf. Published 2020. Accessed.
- 154. Pearson SD. The ICER Value Framework: Integrating Cost Effectiveness and Affordability in the Assessment of Health Care Value. Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2018;21(3):258-265.
- 155. Clinicaltrials.gov. Study to Evaluate Efficacy and Safety of PF-04965842 in Subjects Aged 12 Years And Older With Moderate to Severe Atopic Dermatitis (JADE Mono-1). Published 2019. Accessed.
- 156. Clinicaltrials.gov. Study Evaluating Efficacy and Safety of PF-04965842 in Subjects Aged 12 Years And Older With Moderate to Severe Atopic Dermatitis (JADE Mono-2). Clinical Trials. Published 2020. Accessed.
- 157. Clinicaltrials.gov. Study To Evaluate Pf-04965842 In Subjects With Moderate To Severe Atopic Dermatitis. Published 2019. Accessed2021.
- 158. Reich J. Treatment Withdrawal and Retreatment with Upadacitinib in Patients with Moderateto-Severe Atopic Dermatitis from a Phase 2b, Randomized, Controlled Trial. Paper presented at: Revolutionizing Atopic Dermatitis (RAD) Virtual Conference2021.
- 159. Simpson E. Tralokinumab provides progressive improvements beyond week 16 in patients with atopic dermatitis with an initial partial response. Paper presented at: Revolutioniing Atopic Dermatitis (RAD) Virtual Conference2021.